Corporate Medical Policy

Prenatal Screening AHS – G2035

Description of Procedure or Service

Prenatal screening refers to testing done to determine health status of the pregnant individual and/or fetus. Prenatal screening can consist of screening for infectious diseases and conditions that may complicate the pregnancy as well as testing to determine risk of fetal abnormalities, including genetic and developmental abnormalities. Any individual undergoing screening tests, especially genetic carrier screenings, need to realize the limitations of screening tests and the difference between screening and diagnostic testing where screening refers to testing of asymptomatic or healthy individuals to search for a condition that may affect the pregnancy or individual. Diagnostic testing is used to either confirm or refute true abnormalities in an individual (Grant & Mohide, 1982; Lockwood & Magriples, 2018).

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for prenatal screening when it is determined the medical criteria or reimbursement guidelines below are met.

Benefits Application

This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When prenatal screening is covered

1. Reimbursement is allowed for the following routine prenatal screening for all pregnant women:
 A. Screening for HIV infection
 B. Screening for Chlamydia trachomatis infection
 C. Screening for N. gonorrhea infection
 D. Screening for hepatitis B
 E. Screening for syphilis
 F. Screening for hepatitis C for pregnant women deemed to be at high risk as defined as meeting one of the following criteria: (past or current injection or intranasal drug use, long-term hemodialysis, being born to an HCV-infected mother, incarceration, individuals getting unregulated tattoos).
 G. Screening for bacteriuria
 H. Screening for fetal aneuploidy
 I. Screening for type 2 diabetes at the first prenatal visit
Prenatal Screening AHS – G2035

J. Screening for gestational diabetes during gestational weeks 24 – 28 and at the first prenatal visit if risk factors are present
K. Determination of blood type, Rh(D) status, and antibody status during the first prenatal visit, and repeated Rh (D) antibody testing for all unsensitized Rh (D)-negative women at 24 to 28 weeks' gestation, unless the biological father is known to be Rh (D)-negative
L. Screening for anemia meets coverage criteria with a CBC or hemoglobin and hematocrit with mean corpuscular volume
M. Screening for Group B strep once during gestational weeks 35 to 37
N. Urinalysis and urine culture
O. Rubella antibody testing
P. Testing for varicella immunity
Q. Screening for tuberculosis in pregnant women deemed to be at high risk for TB (i.e. women with close contact with individuals with active pulmonary / respiratory tuberculosis or highly contagious active tuberculosis and women who are immunocompromised)

2. Reimbursement is allowed for third trimester re-screening of Chlamydia trachomatis, Neisseria gonorrhoea, syphilis, and or HIV infections for pregnant women who meet ANY one of the following high-risk criteria:
 A. Sexually active young individuals under 25 years,
 B. New or multiple sexual partners,
 C. Past history of sexually transmitted diseases (Bacterial Vaginosis, Chancroid, Chlamydia, Gonorrhea, Genital Herpes, Hepatitis B, Hepatitis C, HIV/AIDS, Human Papillomavirus, Lymphogranuloma Venereum, Syphilis, Trichomoniasis),
 D. Current sex workers,
 E. Past or current injection drug use

3. For pregnant women and those women seeking pre-conception care, any of the following testing* (See Note 1 below) of carrier status may be covered:
 A. Carrier testing for cystic fibrosis is in accordance with Avalon policies M2017-20150616-Genetic Testing for Cystic Fibrosis
 B. Carrier testing for Canavan disease, Tay-Sachs disease, familial dysautonomia, Gaucher disease, Fanconi Anemia, Niemann-Pick type A, Bloom syndrome and mucolipidosis IV in Ashkenazi Jewish women
 C. Carrier screening for Tay-Sachs disease in women of French-Canadian or Cajun heritage
 D. Carrier screening for fragile X syndrome when there is a family history of fragile X syndrome (or a family history of undefined mental retardation/developmental delay).
 E. Carrier screening for spinal muscular atrophy for all pregnant women and those seeking pre-conception care
 F. Carrier screening for hemoglobinopathies in women of African, Southeast Asian, Mediterranean, Middle Eastern or West Indian descent
 G. Carrier testing for other genetic disorders when there is a family history of a genetic disorder and a properly validated test is available. When there is a known familial mutation, testing should be limited to that mutation, when possible. (See General Genetic Testing policy for more details on appropriate criteria for genetic testing)
 H. Preconception genetic testing (carrier testing) for hereditary hearing loss mutations (GJB2, GJB6, and other hereditary hearing loss-related mutations) in parents according to the policy AHS-G2148-Genetic Testing for Nonsyndromic Hereditary Hearing Loss
 I. Next generation sequencing (NGS) panel testing of either Ashkenazi Jewish related disorders panel or panethnic carriers screening panel of 15 tests as long as a single appropriate AMA genetic sequencing procedure test code is submitted

4. Carrier screening* (See Note 1 below) of the biological father may be covered when the biological mother is known or found to be a carrier of a recessively inherited disorder. Carrier testing limitations:
 A. Repeat carrier screening for the same disorder does not meet coverage criteria.
B. Carrier screening should be limited to once per lifetime per disorder for which the individual is at risk.
C. Carrier screening for a recessively inherited disorder with a carrier frequency of less than 1 in 50 in the specific population being tested does not meet coverage criteria.
D. Panel testing does not meet coverage criteria.

5. Reimbursement is allowed for fetal Fibronectin (FFN) assays for pregnant women who meet ALL of the following criteria:
 A. Singleton or twin gestations,
 B. Intact membranes,
 C. Cervical dilation <3 cm, and
 D. Patient experiencing symptoms suggestive of preterm labor between 24 and less than 35 weeks' gestation.

6. Reimbursement is allowed for testing pregnant women for thyroid dysfunction if they have any of the following:
 A. Symptoms of thyroid disease
 B. Personal history of thyroid disease
 C. Personal history of other medical conditions associated with thyroid disease (e.g. diabetes mellitus, goiter, iodine deficiency)

7. Screening for Zika virus testing is covered in accordance with Avalon Policy AHS–G2133 Zika Virus Testing

8. Pre-conception carrier screening in patients with a family history of a known inherited disorder and if positive, testing of the partner may be covered.

9. Prenatal genetic testing of a fetus may be considered medically necessary if high risk for genetic disorder and a family history is present.

10. Fetal RHD genotyping using maternal plasma may be considered medically necessary in RHD negative pregnant women.

When prenatal screening is not covered

Reimbursement is not allowed for carrier screening more than once per lifetime.

Reimbursement is not allowed for all other applications of the FFN assay, including, but not limited to the following:

- As part of routine pregnancy monitoring in asymptomatic women with singleton gestation and no risk factors for preterm birth.
- As part of clinical monitoring of asymptomatic women at high risk for preterm birth, including but not limited to those with multiple gestations, history of preterm birth, uterine malformation, cervical incompetence, or history of two or more spontaneous second trimester abortions.
- As part of clinical monitoring in women with triplet or higher-order gestations, intact membranes, cervical dilation <3 cm, and who are experiencing symptoms suggestive of preterm labor.
- As a test to identify women at term being considered for induction who are likely to deliver within 24–48 hours and therefore, do not require induction.

Serial monitoring of salivary estriol levels as a technique of risk assessment for preterm labor or delivery.

Pre-conceptional or prenatal genetic testing for inherited medical disorders that do not meet the above criteria is not covered.

Note 1: Carrier testing should be performed using the most appropriate carrier test (e.g. dosage/deletion for *SMN1* and NOT full gene sequencing; *DMD* del/dup testing and NOT full gene sequencing).
Prenatal Screening AHS – G2035

Policy Guidelines

Prenatal screening is a part of overall prenatal care to promote optimal care of both mother and baby. Prenatal screening allows for assessment and monitoring of the fetus for the presence of congenital defects or disease. Various professional medical organizations provide guidelines for prenatal screening. “Screening is an offer on the initiative of the health system or society, rather than a medical intervention in answer to a patient’s complaint or health problem. Screening aims at obtaining population health gains through early detection that enables prevention or treatment (de Jong, Maya, & van Lith, 2015).”

Routine prenatal screening may include several laboratory tests. Hematocrit or hemoglobin testing can be performed to check for anemia and possible thalassemia, pending further diagnostic testing. Blood typing and antibody screening can be performed to prevent possible alloimmunization or hemolytic diseases. Glucose testing can screen for possible gestational diabetes mellitus. Screening for asymptomatic bacteriuria and proteinuria is recommended as well as screening for infectious disorders, such as HIV, syphilis, chlamydia, and gonorrhea (Lockwood & Magriples, 2018).

Additionally, genetic screening tests, including carrier screening for genetic mutations and fetal testing for chromosomal aneuploidy, can be a part of prenatal screening. Aneuploidy screening may be performed on cell-free DNA in maternal circulation or maternal serum levels of specific biochemical markers for trisomy (Lockwood & Magriples, 2018). These non-invasive prenatal testing (NIPT) can possibly decrease the number of more invasive procedures and the risks of unwanted side effects. A chromosomal microarray (CMA) can screen all chromosomes in a single test and “can detect many very small variants that cannot be detected by traditional karyotyping (de Jong et al., 2015)...” In fact, the American College of Obstetricians and Gynecologists (ACOG) recommends CMA for instances where the ultrasound of a fetus shows a major structural abnormality (ACOG, 2016a). CMA in this situation should be performed on DNA from amniotic fluid, chorionic villus cells, or cord blood, however, rather than on maternal serum cell-free DNA since the process does not include an amplification step and the maternal DNA signal would be many times higher than the fetal DNA (Miller, 2018).

Several companies, such as LabCorp, have developed panels to test for potential genetic mutations in pregnant women, or in women planning to become pregnant. Inheritest® Carrier Screening encompasses six different panels to identify potential genetic mutations. These include the Inheritest® 500 PLUS Panel (which screens 525 genes for several clinically relevant genetic disorders), the Inheritest® Comprehensive Panel (which screens for more than 110 disorders), the Inheritest® Ashkenazi Jewish Panel (which screens for more than 40 Ashkenazi Jewish related disorders), the Inheritest® Society-Guided Panel (which screens for more than 13 disorders highlighted in the American College of Medical Genetics and Genomics and the American Congress of Obstetricians and Gynecologists guidelines), the Inheritest® Core Panel (which screens for cystic fibrosis, fragile X syndrome, and spinal muscular atrophy), and the Inheritest® CF/SMA Panel (which screens only for cystic fibrosis and spinal muscular atrophy) (LabCorp, 2020).

Red blood cell antigen discrepancy between a mother and fetus may also occur during pregnancy. This is known as hemolytic disease of the fetus and newborn (HDFN), and it causes maternal antibodies to destroy the red blood cells of the neonate or fetus (Calhoun, 2018). Alloimmunization is the immune response which occurs in the mother due to foreign antigens after exposure to genetically foreign cells. This disease may arise in the ABO blood group, occurring almost exclusively in mothers with type O blood; ABO incompatibility is identified in almost 15% of pregnancies, but only results in HDFN in approximately 4% of pregnancies (Calhoun, 2018). Another important inherited antigen sometimes found on the surface of red blood cells is known as the Rhesus (Rh)D antigen. During pregnancy and delivery, women who are RhD negative may be exposed to RhD positive fetal cells, which can lead to the development of anti-RhD antibodies. This exposure typically happens during delivery and affects subsequent pregnancies; infants with RhD incompatibility tend to experience a more severe form of HDFN than those with ABO incompatibility (Calhoun, 2018). The
Prenatal Screening AHS – G2035

clinical presentation of HDFN may be mild (such as hyperbilirubinemia with mild to moderate anemia) to severe and life-threatening anemia (such as hydrops fetalis) (Calhoun, 2018). Less severely affected infants may develop hyperbilirubinemia within the first day of life; infants with RhD HDFN may also present with symptomatic anemia requiring a blood transfusion. In more severe cases, infants with severe life-threatening anemia, such as hydrops fetalis, may exhibit shock at delivery requiring an emergent blood transfusion (Calhoun, 2018).

The administration of anti-D immune globulin has been able to dramatically reduce, but not eliminate, the number of RhD alloimmunization cases. “Anti-D immune globulin is manufactured from pooled plasma selected for high titers of IgG antibodies to D-positive erythrocytes (Moise, 2019).” Before the development of this anti-D immune globulin, it has been reported that 16% of women with two deliveries of RhD positive ABO compatible infants became alloimmunized; however, after routine postpartum administration of anti-D immune globulin, and an additional administration in the third trimester of pregnancy, this statistic was reduced to 0.1-0.3% (Moise, 2019).

Fetal RhD genotyping using cell-free fetal DNA from maternal plasma can be performed to identify fetal blood type most accurately after 11 weeks of gestation. While the United States has not implemented fetal RhD genotyping for routine prophylaxis and fetal monitoring protocols, several European countries, such as Denmark, the Netherlands, England, Sweden, France and Finland, do utilize fetal RhD determination so that the administration of anti-D immune globulin can be avoided when an RhD-negative fetus is identified (Moise, 2019). Daniels, Finning, Martin, and Summers (2007) report that approximately 40% of RhD-negative pregnant women are carrying a RhD-negative fetus; genotypic screening would, therefore, be very valuable in preventing the unnecessary anti-D immune globulin to these women. Another article by Kent, Farrell, and Soothill (2014) suggest that the administration of anti-D immune globulin to the 1/3 of pregnant women who do not require this administration is unethical, and that the availability of RhD genotyping to all RhD-negative pregnant women would assist in more informed choices being made regarding anti-D immune globulin administration. Finning et al. (2008) agree with the previous statements, declaring that “High throughput RHD genotyping of fetuses in all RhD negative women is feasible and would substantially reduce unnecessary administration of anti-RhD immunoglobulin to RhD negative pregnant women with an RhD negative fetus.”

Clinical Utility and Validity

Biro, Rigo, and Nagy (2020) report on a noninvasive prenatal testing method for congenital heart disease via the measurement of cell-free nucleic acid and protein biomarkers in maternal blood. Congenital heart disease is considered the most common fetal malformation. Currently, prenatal ultrasonography is most commonly used to diagnose congenital heart disease, but it is not the most accurate method. After a large review completed with PubMed and Web of Sciences databases, the authors conclude that most fetal congenital heart disease related disorders can be diagnosed by noninvasive prenatal testing (NIPT) techniques. Further, cell-free RNAs and circulating proteins are potential biomarkers for fetal congenital heart disease, and may be able to improve the detection rate in early pregnancies (Biro et al., 2020).

Implementation of prenatal screening tests can positively affect pregnancies and pregnancy outcomes. The Centers for Disease Control and Prevention (CDC) reports that implementation of the 1996 guidelines concerning Group B Streptococcus (GBS) had a profound effect. Prior to screening and widespread use of intrapartum antibiotics, invasive neonatal GBS occurred in 2 – 3 cases per 1,000 live births; however, after prenatal screening implementation, the rate declined to 0.5 cases per 1,000 live births in 1999 (Schrag, Gorwitz, Fultz-Butts, & Schuchat, 2002). The CDC also reports in a multi-year study that screening for syphilis in all pregnant women at the first prenatal visit (and then rescreening in third trimester for women at risk) is very important in preventing congenital syphilis, which can cause spontaneous abortion, stillbirth, and early infant death. They show that 88.2% of cases of congenital syphilis was avoided when proper screening was applied; moreover,
An Independent Licensee of the Blue Cross and Blue Shield Association

Prenatal Screening AHS – G2035

30.9% of the cases of congenital syphilis that did occur were where the mother did not receive proper prenatal care (≥45 days before delivery) (Slutsker, Hennessy, & Schillinger, 2018).

A study by Persico et al. (2016) investigated the clinical implication of cell-free DNA (cfDNA) testing in high-risk pregnancies. In their cohort of 259 singleton pregnancies, cfDNA testing provided results in 249 (96.1%). Further, cfDNA testing is identified in 97.2% (35/36) of trisomy 21, 100% (13/13) of trisomy 18, 100% of trisomy 13 (5/5), and 75% of sex chromosome aneuploidies (3/4). The authors conclude that “a policy of performing an invasive test in women with a combined risk of ≥1 in 10 or NT ≥4 mm and offering cfDNA testing to the remaining cases would detect all cases of trisomy 21, 18 or 13, 80% of sex aneuploidies and 62.5% of other defects and would avoid an invasive procedure in 82.4% of euploid fetuses (Persico et al., 2016).” These data support the earlier meta-analysis that reported NIPT sensitivity of trisomy 21, trisomy 18, and trisomy 13 of 99%, 96.8%, and 92.1%, respectively and specificities of 99.92%, 99.85%, and 99.80%, respectively, for trisomies 21, 18, and 13 (Dondorp et al., 2015; Gil, Akolekar, Quezada, Bregant, & Nicolaides, 2014).

A multi-year study of more than 5000 patients in public hospitals in Spain on the effect of NIPT on the number of invasive procedures performed shows that the introduction of NIPT drastically reduces the incidences of invasive procedures. The data shows that, even though a 60.5% reduction occurred in invasive procedures, the chromosomopathy detection rate was unaffected; moreover, the ratio of positive invasive procedures was improved to 50%, indicating that unwarranted invasive procedures had been avoided (Martinez-Payo, Bada-Bosch, Martinez-Moya, & Perez-Medina, 2018). The authors of the study concluded, “NIPT introduction has caused a significant reduction of 60.5% of IP [invasive procedures] in high chromosomopathy risk patients after combined screening without modifying detection rate (Martinez-Payo et al., 2018).”

A meta-analysis was completed by Mackie, Hemming, Allen, Morris, and Kilby (2017) which researched the accuracy of cell-free fetal DNA NIPT testing in singleton pregnancies. A total of 117 studies were included which analyzed 18 different conditions. For RHD testing, a sensitivity of 0.993 and specificity of 0.984 was identified, and for fetal sex identification, a sensitivity of 0.989 and a specificity of 0.996 was calculated (Mackie et al., 2017). With such high sensitivity and specificity calculations, NIPT testing for fetal sex and RHD status may be considered accurate diagnostic tools.

Clausen et al. (2014) completed a two-year evaluation of nationwide prenatal RhD screening in Denmark. A total of 12,668 pregnancies were analyzed, with blood samples drawn in week 25 of pregnancy. DNA was extracted from these blood samples and was analyzed for the RHD gene. Results were compared to the serological typing of the newborns after birth. “The sensitivity for the detection of fetal RHD was 99.9% (95% CI: 99.7-99.9%). Unnecessary recommendation of prenatal RhD prophylaxis was avoided in 97.3% of the women carrying an RhD-negative fetus. Fetuses that were seropositive for RhD were not detected in 11 pregnancies (0.087%) (Clausen et al., 2014).” This study shows high sensitivity of fetal RHD genotyping. These results were recently supported by another large scale meta-analysis completed by Yang et al. (2019) focusing on NIPT testing for fetal RhD status. A total of 3921 results confirmed that “High-throughput NIPT is sufficiently accurate to detect fetal RhD status in RhD-negative women and would considerably reduce unnecessary treatment with routine anti-D immunoglobulin (Yang et al., 2019).”

Darlington et al. (2018) completed an analysis of 11 French Obstetric Departments with a total of 949 patients to determine the effectiveness of RhD genotyping. The patients were separated into two groups (genotyping group: n=515, and control group: n=335). The authors concluded that “Early knowledge of the RHD status of the fetus using non-invasive fetal RHD genotyping significantly improved the management of RHD negative pregnancies with a small increase in cost (Darlington et al., 2018).”

A prospective cohort study by de Haas et al. (2016) completed a nationwide program in the Netherlands hoping to determine the sensitivity of fetal RhD screening for the safe guidance of targeted anti-immune globulin prophylaxis. A total of 25,789 RhD-negative pregnant woman
Prenatal Screening AHS – G2035

participated in this study. Fetal testing for the RHD gene was assessed in the 27th week of pregnancy. Fetal RHD test results were compared to serological cord blood results after birth. “Sensitivity for detection of fetal RHD was 99.94% (95% confidence interval 99.89% to 99.97%) and specificity was 97.74% (97.43% to 98.02%). Nine false-negative results for fetal RHD testing were registered (0.03%, 95% confidence interval 0.01% to 0.06%) (de Haas et al., 2016).” Therefore, fetal RhD testing is a highly reliable testing method.

Manfroi et al. (2018) completed fetal RhD genotyping with real-time polymerase chain reaction (qPCR) using cell-free fetal DNA extracted from maternal plasma. A commercial multiple-exon assay was used to determine fetal RHD genotypic accuracy. A total of 367 plasma samples obtained between the 24th and 28th weeks of pregnancy were used for this study. Neonatal results were available for 284 of the pregnancies. The sensitivity was reported at 100% and specificity at 97.5%. The diagnostic accuracy was 96.1% with the inclusion of 9/284 inconclusive results (Manfroi et al., 2018). This is therefore an accurate and reliable tool for targeted prenatal immunoprophylaxis.

This policy focuses on laboratory testing performed during pre-conception and/or prenatal periods as part of a comprehensive prenatal care program.

Guidelines and Recommendations

American College of Obstetricians and Gynecologists (ACOG)
ACOG has a number of practice guidelines related to prenatal care as well as both pre-conception and prenatal testing. ACOG recommendations and guidelines include the following:

- Concerning vitamin D screening, “there is insufficient evidence to support a recommendation for screening all pregnant women for vitamin D deficiency. For pregnant women thought to be at increased risk of vitamin D deficiency, maternal serum 25-hydroxyvitamin D levels can be considered and should be interpreted in the context of the individual clinical circumstance [reaffirmed in 2017] (ACOG, 2011b).”
- Concerning lead screening, they recommend risk assessment of lead exposure at earliest contact with blood lead testing if even one single risk factor is identified. This was reaffirmed in 2018 (ACOG, 2012).
- ACOG Committee Opinion on subclinical hypothyroidism in pregnancy does not recommend routine screening for subclinical hypothyroidism. It states that “thyroid testing in pregnancy should be performed on symptomatic women and those with a personal history of thyroid disease or other medical conditions associated with thyroid disease (e.g., diabetes mellitus) (ACOG, 2015a)”. “All obstetrician-gynecologists and other obstetric care providers screen patients at least once during the perinatal period for depression and anxiety symptoms using a standardized, validated tool. [They should] complete a full assessment of mood and emotional well-being (including screening for postpartum depression and anxiety with a validated instrument) during the comprehensive postpartum visit for each patient (ACOG, 2018b).”
- Concerning testing for Listeria monocytogenes (ACOG, 2014), “No testing, including blood and stool cultures, or treatment is indicated for an asymptomatic pregnant woman who reports consumption of a product that was recalled or implicated during an outbreak of listeria contamination. An asymptomatic patient should be instructed to return if she develops symptoms of listeriosis within 2 months of eating the recalled or implicated product.” If an exposed pregnant woman shows signs and symptoms consistent with infection, then blood culture testing is the standard of care. Stool culture testing is not recommended since it has not been validated as a screening tool. This position was reaffirmed in 2016.
- Concerning HIV, ACOG recommends that all women should be tested for HIV with the right to refuse testing. “Human immunodeficiency virus testing using the opt-out approach, which is currently permitted in every jurisdiction in the United States, should be a routine component of care for women during prepregnancy and as early in
pregnancy as possible. Repeat HIV testing in the third trimester, preferably before 36 weeks of gestation, is recommended for pregnant women with initial negative HIV antibody tests who are known to be at high risk of acquiring HIV infection; who are receiving care in facilities that have an HIV incidence in pregnant women of at least 1 per 1,000 per year; who are incarcerated; who reside in jurisdictions with elevated HIV incidence; or who have signs and symptoms consistent with acute HIV infection (eg, fever, lymphadenopathy, skin rash, myalgias, arthralgias, headache, oral ulcers, leukopenia, thrombocytopenia, or transaminase elevation). Rapid screening during labor and delivery or during the immediate postpartum period using the opt-out approach should be done for women who were not tested earlier in pregnancy or whose HIV status is otherwise unknown. Results should be available 24 hours a day and within 1 hour (Pollock, Cohan, Pecci, & Mittal, 2019).”

- For pregnant women who test positive for HIV, “Additional laboratory work, including CD4+ count; HIV viral load; testing for antiretroviral resistance; hepatitis C virus antibody; hepatitis B surface antigen and viral load; and hepatitis A using antibody testing for immunoglobulin G for women who have hepatitis B virus infection and who have not already received the hepatitis A virus vaccine series; complete blood count with platelet count; and baseline chemistries with comprehensive metabolic testing, will be useful before prescribing antiretroviral therapy (Pollock et al., 2019).”

- Concerning genetic testing and genetic counseling, ACOG recommends:
 - “Clinicians should be able to identify patients within their practices who are candidates for genetic testing and should maintain competence in the face of increasing genetic knowledge [reaffirmed in 2014] (ACOG, 2008).”
 - “Obstetrician–gynecologists should recognize that geneticists and genetic counselors are an important part of the health care team and should consult with them and refer as needed [reaffirmed in 2014] (ACOG, 2008).” This is also recommended within Committee Opinion No. 693 (Biggio, Ralston, & ACOG, 2017).
 - “A hereditary cancer risk assessment is the key to identifying patients and families who may be at increased risk of developing certain types of cancer. This assessment should be performed by obstetrician–gynecologists or other obstetric–gynecologic providers and should be updated regularly. If a hereditary cancer risk assessment suggests an increased risk of a hereditary cancer syndrome, referral to a specialist in cancer genetics or a health care provider with expertise in genetics is recommended for expanded gathering of family history information, risk assessment, education, and counseling, which may lead to genetic testing [reaffirmed in 2017] (ACOG, 2015c).”
 - Preconception evaluation for patients with known genetic conditions or those having high risk of specific genetic conditions is recommended. “Once pregnant, the patient with a genetic condition should have her initial prenatal examination early in the first trimester. This will allow for coordination of prenatal screening or testing and evaluation of pregnancy risks [reaffirmed in 2017] (ACOG, 2015e).”
 - “The routine use of whole-genome or whole-exome sequencing for prenatal diagnosis is not recommended outside of the context of clinical trials until sufficient peer-reviewed data and validation studies are published (ACOG, 2016).”
 - Chromosomal microarray analysis (CMA) is recommended for patients with a fetus with at least one major structure abnormality identified via ultrasound. CMA can be considered for all pregnant women who undergo prenatal diagnostic testing; however, “In a patient with a structurally normal fetus who is undergoing invasive prenatal diagnostic testing, either fetal karyotyping or a chromosomal microarray analysis can be performed. Chromosomal microarray analysis of fetal tissue (ie, amniotic fluid, placenta, or products of conception) is
Prenatal Screening AHS – G2035

recommended in the evaluation of intrauterine fetal death or stillbirth when further cytogenetic analysis is desired because of the test’s increased likelihood of obtaining results and improved detection of causative abnormalities [(ACOG, 2016) reaffirmed 2019]."

- “All patients who are considering pregnancy or are already pregnant, regardless of screening strategy and ethnicity, should be offered carrier screening for cystic fibrosis and spinal muscular atrophy, as well as a complete blood count and screening for thalassemias and hemoglobinopathies. Fragile X premutation carrier screening is recommended for women with a family history of fragile X-related disorders or intellectual disability suggestive of fragile X syndrome, or women with a personal history of ovarian insufficiency. Additional screening also may be indicated based on family history or specific ethnicity (Romero, Rink, Biggio, Saller, & ACOG, 2017).”

- “Direct-to-consumer genetic testing should be discouraged because of the potential harm of a misinterpreted or inaccurate result (Rink, Biggio, Kamyar, & ACOG, 2017).”

- ACOG “recommends considering whole-exome sequencing when specific genetic tests available for a phenotype, including targeted sequencing tests, have failed to arrive at a diagnosis in a fetus with multiple congenital anomalies suggestive of a genetic disorder (Vora, Ralston, & ACOG, 2018);” however, they note that “Cascade testing has been shown to be cost effective in part because testing for specific mutations (eg, those identified in the affected relative) is less expensive than whole-gene sequencing (Witkop & ACOG, 2018).”

- Concerning cell-free DNA screening for fetal aneuploidy, ACOG states the following (ACOG, 2015d):
 - “Given the performance of conventional screening methods, the limitations of cell-free DNA screening performance, and the limited data on cost-effectiveness in the low-risk obstetric population, conventional screening methods remain the most appropriate choice for first-line screening for most women in the general obstetric population.
 - Given the potential for inaccurate results and to understand the type of trisomy for recurrence-risk counseling, a diagnostic test should be recommended for a patient who has a positive cell-free DNA test result.
 - Parallel or simultaneous testing with multiple screening methodologies for aneuploidy is not cost-effective and should not be performed.
 - Management decisions, including termination of the pregnancy, should not be based on the results of the cell-free DNA screening alone.
 - Routine cell-free DNA screening for microdeletion syndromes should not be performed.
 - Cell-free DNA screening is not recommended for women with multiple gestations.
 - If a fetal structural anomaly is identified on ultra-sound examination, diagnostic testing should be offered rather than cell-free DNA screening.
 - Cell-free DNA screening does not assess risk of fetal anomalies such as neural tube defects or ventral wall defects; patients who are undergoing cell-free DNA screening should be offered maternal serum alpha-fetoprotein screening or ultrasound evaluation for risk assessment.
 - Patients may decline all screening or diagnostic testing for aneuploidy (ACOG, 2015d).”

- ACOG issued the recommended uniform newborn screening panel of core conditions in 2015 and reaffirmed it in 2018. The table is listed below (ACOG, 2015b):

•
Table 1. Recommended Uniform Newborn Screening Panel of Core Conditions

<table>
<thead>
<tr>
<th>Disease Categories</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inborn errors of organic acid metabolism</td>
<td>Isovaleric acidemia
Glutaric acidemia type I
3-Hydroxy-3-methylglutaric aciduria
Holocarboxylase synthase deficiency
Methylmalonic acidemia (methylmalonyl-CoA mutase)
3-Methylcrotonyl-CoA carboxylase deficiency
Methylmalonic acidemia (cobalamin disorders)
Propionic acidemia
β-ketothiolase deficiency</td>
</tr>
<tr>
<td>Inborn errors of fatty acid metabolism</td>
<td>Medium-chain acyl-CoA dehydrogenase deficiency
Very long-chain acyl-CoA dehydrogenase deficiency
Long-chain L-3 hydroxyacyl-CoA dehydrogenase deficiency
Trifunctional protein deficiency
Carnitine uptake defect/transport defect</td>
</tr>
<tr>
<td>Inborn errors of amino acid metabolism</td>
<td>Classic phenylketonuria
Maple syrup urine disease
Homocystinuria
Citrullinemia, type I
Argininosuccinic aciduria
Tyrosinemia, type I</td>
</tr>
<tr>
<td>Hemoglobinopathies</td>
<td>S,S disease (Sickle cell anemia)
S,β-thalassemia
S,C disease</td>
</tr>
<tr>
<td>Miscellaneous multisystem diseases</td>
<td>Primary congenital hypothyroidism
Biotinidase deficiency
Congenital adrenal hyperplasia
Classic galactosemia
Cystic fibrosis
Severe combined immunodeficiency</td>
</tr>
<tr>
<td>Newborn screening by methods other than by heap stick</td>
<td>Hearing loss
Critical congenital heart disease</td>
</tr>
</tbody>
</table>

- Concerning genetic carrier screening, including testing for specific conditions, ACOG recommends ([Rink, Romero, et al., 2017] reaffirmed 2019):
 - “Carrier screening and counseling ideally should be performed before pregnancy.
 - If an individual is found to be a carrier for a specific condition, the individual’s reproductive partner should be offered testing in order to receive informed genetic counseling about potential reproductive outcomes. Concurrent screening of the patient and her partner is suggested if there are time constraints for decisions about prenatal diagnostic evaluation.
 - Carrier screening for a particular condition generally should be performed only once in a person’s lifetime, and the results should be documented in the patient’s health record. Because of the rapid evolution of genetic testing, additional mutations may be included in newer screening panels. The decision to rescreen a patient should be undertaken only with the guidance of a genetics
Prenatal Screening AHS – G2035

professional who can best assess the incremental benefit of repeat testing for additional mutations.

- Prenatal carrier screening does not replace newborn screening, nor does newborn screening replace the potential value of prenatal carrier screening.
- The cost of carrier screening for an individual condition may be higher than the cost of testing through commercially available expanded carrier screening panels. When selecting a carrier screening approach, the cost of each option to the patient and the health care system should be considered.
- Screening for spinal muscular atrophy should be offered to all women who are considering pregnancy or are currently pregnant. In patients with a family history of spinal muscular atrophy, molecular testing reports of the affected individual and carrier testing of the related parent should be reviewed, if possible, before testing. If the reports are not available, SMN1 deletion testing should be recommended for the low-risk partner.
- Cystic fibrosis carrier screening should be offered to all women who are considering pregnancy or are currently pregnant. Complete analysis of the CFTR gene by DNA sequencing is not appropriate for routine carrier screening.
- A complete blood count with red blood cell indices should be performed in all women who are currently pregnant to assess not only their risk of anemia but also to allow assessment for risk of a hemoglobinopathy. Ideally, this testing also should be offered to women before pregnancy. A hemoglobin electrophoresis should be performed in addition to a complete blood count if there is suspicion of hemoglobinopathy based on ethnicity (African, Mediterranean, Middle Eastern, Southeast Asian, or West Indian descent). If red blood cell indices indicate a low mean corpuscular hemoglobin or mean corpuscular volume, hemoglobin electrophoresis also should be performed.
- Fragile X premutation carrier screening is recommended for women with a family history of fragile X-related disorders or intellectual disability suggestive of fragile X syndrome and who are considering pregnancy or are currently pregnant.
- If a woman has unexplained ovarian insufficiency or failure or an elevated follicle-stimulating hormone level before age 40 years, fragile X carrier screening is recommended to determine whether she has an FMR1 premutation.
- All identified individuals with intermediate results and carriers of a fragile X premutation or full mutation should be provided follow-up genetic counseling to discuss the risk to their offspring of inheriting an expanded full-mutation fragile X allele and to discuss fragile X-associated disorders (premature ovarian insufficiency and fragile X tremor/ataxia syndrome).
- Prenatal diagnostic testing for fragile X syndrome should be offered to known carriers of the fragile X premutation or full mutation.
- DNA-based molecular analysis (eg, Southern blot analysis and polymerase chain reaction) is the preferred method of diagnosis of fragile X syndrome and of determining FMR1 triplet repeat number (eg, premutations). In rare cases, the size of the triplet repeat and the methylation status do not correlate, which makes it difficult to predict the clinical phenotype. In cases of this discordance, the patient should be referred to a genetics professional.
- When only one partner is of Ashkenazi Jewish descent, that individual should be offered screening first. If it is determined that this individual is a carrier, the other partner should be offered screening. However, the couple should be informed that the carrier frequency and the detection rate in non-Jewish individuals are unknown for most of these disorders, except for Tay–Sachs disease and cystic fibrosis. Therefore, it is difficult to accurately predict the couple’s risk of having a child with the disorder.
Prenatal Screening AHS – G2035

- Screening for Tay–Sachs disease should be offered when considering pregnancy or during pregnancy if either member of a couple is of Ashkenazi Jewish, French–Canadian, or Cajun descent. Those with a family history consistent with Tay–Sachs disease also should be offered screening. When one member of a couple is at high risk (ie, of Ashkenazi Jewish, French–Canadian, or Cajun descent or has a family history consistent with Tay–Sachs disease) but the other partner is not, the high-risk partner should be offered screening. If the high-risk partner is found to be a carrier, the other partner also should be offered screening. Enzyme testing in pregnant women and women taking oral contraceptives should be performed using leukocyte testing because serum testing is associated with an increased false-positive rate in these populations. If Tay–Sachs disease screening is performed as part of pan-ethnic expanded carrier screening, it is important to recognize the limitations of the mutations screened in detecting carriers in the general population. In the presence of a family history of Tay–Sachs disease, expanded carrier screening panels are not the best approach to screening unless the familial mutation is included on the panel (Rink, Romero, et al., 2017)."

- Regarding expanded carrier screening panels, ACOG recommends that “the disorders selected for inclusion should meet several of the following consensus-determined criteria: have a carrier frequency of 1 in 100 or greater, have a well-defined phenotype, have a detrimental effect on quality of life, cause cognitive or physical impairment, require surgical or medical intervention, or have an onset early in life.” ACOG further states that “screened conditions should be able to be diagnosed prenatally and may afford opportunities for antenatal intervention to improve perinatal outcomes, changes to delivery management to optimize newborn and infant outcomes, and education of the parents about special care needs after birth (Romero et al., 2017).”

- Universal screening for Group B Streptococcal disease at 35 – 37 weeks of gestation with a “permissive statement for limited role of nucleic acid amplification tests for intrapartum testing for GBS [Reaffirmed in 2016; correction published in 2018] (ACOG, 2011a, 2018a)”.

- ACOG lists the following lab tests to be performed early in pregnancy: complete blood count (CBC), blood type, urinalysis, urine culture, rubella, hepatitis B, hepatitis C, HIV, sexually transmitted infection (STI) testing, and tuberculosis. Concerning STIs, all pregnant women should be tested for syphilis and chlamydia with proof-of-cure testing for women who are treated for either infection. Women who are at high-risk for gonorrhea should be tested (ACOG, 2017).

- ACOG lists the following lab tests to be performed later in pregnancy: repeat CBC, Rh antibody test, glucose screening test, and Group B streptococci (GBS) (ACOG, 2017).

- The April 2019 update concerning Zika, ACOG states the following (ACOG, 2018c, 2019):
 - “Symptomatic pregnant women with possible Zika virus exposure or women who are pregnant with a fetus showing abnormalities consistent with congenital Zika virus syndrome should be tested as soon as possible. Asymptomatic pregnant women with ongoing possible exposure can be offered nucleic acid testing during pregnancy as part of routine obstetric care.
 - Asymptomatic pregnant women with possible Zika virus exposure but without ongoing possible exposure are not recommended routinely to have Zika virus testing, but testing can be considered as part of a shared patient–provider decision-making model (ACOG, 2019).”

United States Preventive Services Task Force (USPSTF)
The United States Preventive Services Task Force (USPSTF) recommends the following testing for pregnant women:

- Screening for hepatitis B virus (HBV) infection at the first prenatal visit (Grade B) (USPSTF, 2009)
Prenatal Screening AHS – G2035

- Screening for asymptomatic bacteriuria with urine culture at 12 to 16 weeks' gestation or at the first prenatal visit if later (Grade A) (USPSTF, 2008a)
- Screening for gestational diabetes mellitus after 24 weeks of gestation (Grade B) (V. A. Moyer, 2014)
- Screening for HIV, including those women who present in labor who are untested and whose HIV status is unknown (Grade A) (V. A. Moyer & USPSTF, 2013b)
- Rh (D) blood typing and antibody testing during the first prenatal visit (Grade A) (USPSTF, 2005)
- Repeated Rh (D) antibody testing for all unsensitized Rh (D)-negative women at 24-28 weeks' gestation, unless the biological father is known to be Rh (D)-negative (Grade B) (USPSTF, 2005)
- Screening early for syphilis infection in all pregnant women (Grade A) (USPSTF, 2018)

Additional recommendations from the USPSTF that may be relevant during pregnancy include:
- Screening for chlamydia in sexually active women aged 24 years or younger and in older women who are at increased risk for infection (Grade B) (LeFevre & USPSTF, 2014)
- Screening for gonorrhea in sexually active women aged 24 years or younger and in older women who are at increased risk for infection (Grade B) (LeFevre & USPSTF, 2014)
- Screening for depression in general population, including pregnant and post-partum women (Grade B) (Siu & USPSTF, 2016)
- Screening for hepatitis C virus (HCV) infection in persons at high risk for infection, or a one-time screening for HCV infection in adults born between 1945 and 1965 (Grade B) (V. A. Moyer & USPSTF, 2013a)

However, the USPSTF recommends against the following tests during pregnancy:
- Screening for bacterial vaginosis in asymptomatic women (USPSTF, 2008b)
- Serological screening for herpes simplex virus (HSV) in asymptomatic pregnant women (USPSTF, 2016)
- Screening for elevated blood lead levels in asymptomatic pregnant women (USPSTF, 2006)
- Concerning screening pregnant women for drug use, they state, “The available evidence does not permit one to determine the overall clinical utility of these instruments when applied in a busy primary care practice setting, and especially in screening pregnant women for drug use (Lanier & Ko, 2008).”
- “The USPSTF concludes that the current evidence is insufficient to assess the balance of benefits and harms of screening for iron deficiency anemia in pregnant women to prevent adverse maternal health and birth outcomes (Siu, 2015).”

American Diabetes Association
The American Diabetes Association in the 2018 Standards of Medicare Care in Diabetes make the following recommendations (ADA, 2018, 2020):
- “Test for undiagnosed diabetes at the first prenatal visit in those with risk factors, using standard diagnostic criteria. [Grade] B
- Test for gestational diabetes mellitus at 24–28 weeks of gestation in pregnant women not previously found to have diabetes. [Grade] A
- Test women with gestational diabetes mellitus for prediabetes at 4–12 weeks postpartum, using the 75-g oral glucose tolerance test and clinically appropriate nonpregnancy diagnostic criteria. [Grade] E
- Women with a history of gestational diabetes mellitus should have lifelong screening for the development of diabetes or prediabetes at least every 3 years. [Grade] B
- Women with a history of gestational diabetes mellitus found to have prediabetes should receive intensive lifestyle interventions or metformin to prevent diabetes. [Grade] A”

Centers for Disease Control and Prevention (CDC)
The Centers for Disease Control and Prevention (CDC) recommends:
An Independent Licensee of the Blue Cross and Blue Shield Association

Prenatal Screening AHS – G2035

- All pregnant women get testing for HIV, hepatitis B virus (HBV) and syphilis during each pregnancy (CDC, 2019b).
- Repeat HIV screening in the third trimester for women at high-risk of STDs—"Women who use illicit drugs, have STDs during pregnancy, have multiple sex partners during pregnancy, live in areas with high HIV prevalence, or have partners with HIV infection (CDC, 2015b)."
- Screening of all pregnant women for HBsAg (Hepatitis B Surface Antigen Test) during each pregnancy regardless of prior testing with a retest at time of delivery for those at high risk, including persons born in regions of high endemicity (≥2% prevalence) and HIV positive individuals (CDC, 2015b).
- Testing of all pregnant women for syphilis during the first prenatal visit and, for individuals at high risk, retest early in the third semester as well as time of delivery (CDC, 2015b).
- Chlamydia trachomatis screening at the first prenatal visit and repeat testing during the third trimester for women under 25 years or at high risk for acquisition. “Pregnant women with chlamydial infection should have a test-of-cure 3-4 weeks after treatment and be retested within 3 months (CDC, 2015b).”
- N. gonorrhea testing of all pregnant women under 25 years of age and older women at risk for infection or living in an area of high prevalence of N. gonorrhea. For pregnant women who receive treatment for gonorrhea, they should be retested 3 months after treatment (CDC, 2015b).
- Screening for hepatitis C is recommended in pregnant women at high risk for infection and pregnant women born between 1945 – 1965 (CDC, 2015b). It is not recommended for pregnant women who have no risk factors (CDC, 2015c).
- Zika virus testing for symptomatic pregnant persons:
 - “For symptomatic pregnant women who had recent travel to areas with active dengue transmission and a risk of Zika, specimens should be collected as soon as possible after the onset of symptoms up to 12 weeks after symptom onset.
 - The following diagnostic testing should be performed at the same time:
 1. Dengue and Zika virus NAAT testing on a serum specimen, and Zika virus NAAT on a urine specimen, and
 2. IgM testing for dengue only.
 - Zika virus IgM testing is NOT recommended for symptomatic pregnant women.
 1. Zika IgM antibodies can persist for months to years following infection. Therefore, detecting Zika IgM antibodies might not indicate a recent infection.
 2. There is notable cross-reactivity between dengue IgM and Zika IgM antibodies in serologic tests. Antibodies generated by a recent dengue virus infection can cause the Zika IgM to be falsely positive.
 - If the Zika NAAT is positive on a single specimen, the Zika NAAT should be repeated on newly extracted RNA from the same specimen to rule out false-positive NAAT results. If the dengue NAAT is positive, this provides adequate evidence of a dengue infection and no further testing is indicated.
 - If the IgM antibody test for dengue is positive, this is adequate evidence of a dengue infection and no further testing is indicated (CDC, 2019a).”
 - ZIKA virus testing in asymptomatic pregnant women is not recommended.
- Cervical cancer screening intervals in pregnant women should be the same as for nonpregnant women (CDC, 2015b).
- “Evidence does not support routine HSV-2 serologic screening among asymptomatic pregnant women. However, type-specific serologic tests might be useful for identifying pregnant women at risk for HSV infection and guiding counseling regarding the risk for acquiring genital herpes during pregnancy (CDC, 2015b, 2019a).”
Prenatal Screening AHS – G2035

- “Evidence is insufficient to recommend routine screening for BV in asymptomatic pregnant women at high or low risk for preterm delivery for the prevention of preterm birth (CDC, 2015a)”.

American College of Medical Genetics and Genomics (ACMG)
The American College of Medical Genetics and Genomics (ACMG) recommends that the following (Gregg et al., 2016):

- “Allowing patients to select diagnostic or screening approaches for the detection of fetal aneuploidy and/or genomic changes that are consistent with their personal goals and preferences.”
- “Informing all pregnant women that diagnostic testing (CVS or amniocentesis) is an option for the detection of chromosome abnormalities and clinically significant CNVs [copy-number variants].”
- “Informing all pregnant women that NIPS [non-invasive prenatal screening] is the most sensitive screening option for traditionally screened aneuploidies (i.e., Patau, Edwards, and Down syndromes).”
- “Offering diagnostic testing when a positive screening test result is reported after NIPS.”
- The ACMG does NOT recommend “NIPS to screen for autosomal aneuploidies other than those involving chromosomes 13, 18, and 21.”
- “Offering diagnostic testing for a no-call NIPS result due to low fetal fraction if maternal blood for NIPS was drawn at an appropriate gestational age. A repeat blood draw is NOT appropriate.”
- “Offering aneuploidy screening other than NIPS in cases of significant obesity.”
- “Offering diagnostic testing when a positive screening test result is reported after screening for sex chromosome aneuploidies.”
- “Offering diagnostic testing (CVS or amniocentesis) with CMA when NIPS identifies a CNV.”
- ACMG does NOT recommend “NIPS to screen for genome-wide CNVs. If this level of information is desired, then diagnostic testing (e.g., chorionic villous sampling or amniocentesis) followed by CMA is recommended.”
- “Offering aneuploidy screening other than NIPS for patients with a history of bone marrow or organ transplantation from a male donor or donor of uncertain biologic sex.”

In the ACMG practice guidelines concerning carrier screening in individuals of Ashkenazi Jewish descent, they “recommend that carrier screening for cystic fibrosis, Canavan disease, familial dysautonomia, and Tay-Sachs disease be offered to all Ashkenazi Jews who are pregnant or considering pregnancy, according to current American College of Medical Genetics and/or the American College of Obstetricians and Gynecologists (ACOG) guidelines. In addition, we recommend that carrier screening be offered for Fanconi anemia (Group C), Niemann-Pick (Type A), Bloom syndrome, mucolipidosis IV, and Gaucher disease (Gross, Pletcher, & Monaghan, 2008).” Concerning carrier screening for spinal muscular atrophy, ACMG recommends, “Because SMA is present in all populations, carrier testing should be offered to all couples regardless of race or ethnicity. Ideally, the testing should be offered before conception or early in pregnancy (Prior, 2008).” They also recommend carrier screening for Fragile X syndrome for pregnant women and those considering pregnancy who have a family history of Fragile X syndrome or undefined mental retardation (Sherman, Pletcher, & Driscoll, 2005). Cystic fibrosis carrier screening for all pregnant women and those considering pregnancy is recommended; moreover, the ACMG released the mutation frequency data of various ethnic groups within their 2004 revision of the cystic fibrosis screening guidelines (Watson et al., 2004). In 2014, the American College of Medical Genetics and Genomics issued the following guidelines for the clinical evaluation and diagnosis of hearing loss. For individuals lacking physical findings suggestive of a known syndrome and having medical and birth histories that do not suggest an environmental cause of hearing loss, ACMG recommends that a tiered diagnostic approach should be implemented (Alford et al., 2014):
“Single-gene testing may be warranted in cases in which the medical or family history, or presentation of the hearing loss, suggests a specific etiology.”

“In the absence of any specific clinical indications and for singleton cases and cases with apparent autosomal recessive inheritance, the next step should be testing for DFNB1-related hearing loss (due to mutations in GJB2 and adjacent deletions in GJB6).”

“If initial genetic testing is negative, genetic testing using gene panel tests, NGS technologies such as large sequencing panels targeted toward hearing loss–related genes, WES, or WGS may be considered.”

Also, in 2014, the ACMG released guidelines concerning the diagnosis and management of phenylalanine hydroxylase (PAH) deficiency. They recommend PAH testing be part of newborn screening and that quantitative blood amino acids testing should be performed for diagnostic testing following a positive newborn screen of PAH deficiency. “Additional testing is needed to define the cause of elevated PHE and should include analysis of pterin metabolism; PAH genotypic is indicated for improved therapy planning (Vockley et al., 2014).”

World Health Organization (WHO)
In 2016, the WHO released their publication titled, *WHO recommendations on antenatal care for a positive pregnancy experience*, which had the following recommendations (WHO, 2016):

- Anemia (Context-specific recommendation)—“Full blood count testing is the recommended method for diagnosing anaemia in pregnancy.”
- Asymptomatic bacteriuria (Context-specific recommendation)—“Midstream urine culture is the recommended method for diagnosing asymptomatic bacteriuria (ASB) in pregnancy. In settings where urine culture is not available, on-site midstream urine Gram-staining is recommended over the use of dipstick tests as the method for diagnosing ASB in pregnancy.”
- Gestational diabetes mellitus (Recommended)—“Hyperglycaemia first detected at any time during pregnancy should be classified as either gestational diabetes mellitus (GDM) or diabetes mellitus in pregnancy, according to WHO criteria.”
- HIV and syphilis (Recommended)—“In high-prevalence settings, provider-initiated testing and counselling (PITC) for HIV should be considered a routine component of the package of care for pregnant women in all antenatal care settings. In low-prevalence settings, PITC can be considered for pregnant women in antenatal care settings as a key component of the effort to eliminate mother-to-child transmission of HIV, and to integrate HIV testing with syphilis, viral or other key tests, as relevant to the setting, and to strengthen the underlying maternal and child health systems.”
- Tuberculosis (Context-specific recommendation)—“In settings where the tuberculosis (TB) prevalence in the general population is 100/100 000 population or higher, systematic screening for active TB should be considered for pregnant women as part of antenatal care (WHO, 2016).”

Department of Veterans Affairs/Department of Defense (VA/DoD)
In the 3rd edition of the VA/DoD *Clinical Practice Guideline for the Management of Pregnancy (VA & DOD, 2018)*, they list the following lab tests as routine for all pregnancies in the first prenatal visit: HIV, CBC, ABO Rh blood typing, Antibody screen, anemia/hemoglobinopathies screen, rapid plasma reagin, gonorrhea, chlamydia, hepatitis B surface antigen test, rubella IgG, Urinalysis and culture, and varicella IgG (if status is unknown). They also list the following among their recommendations (VA & DOD, 2018):

- “We recommend screening for use of tobacco, alcohol, illicit drugs, and unauthorized use of prescription medication because their use is common and can result in adverse outcomes. For women who screen positive, we recommend additional evaluation and treatment.” [Strong]
- “We recommend screening for depression using a standardized tool such as the Edinburgh Postnatal Depression Scale or the 9-item Patient Health Questionnaire periodically during pregnancy and postpartum.” [Strong]
Prenatal Screening AHS – G2035

- “We suggest making prenatal diagnostic testing for aneuploidy available to all pregnant women.” [Weak]
- “We recommend offering prenatal screening for aneuploidy and the most common clinically significant genetic disorders to all pregnant women. When aneuploidy screening is desired, cellfree fetal DNA screening should be considered; however, screening test selection should be individualized and take into account the patient’s age, baseline aneuploidy risk, and test performance for a given condition.” [Strong]
- “We suggest the two-step process (one-hour oral glucose challenge test followed by three-hour oral glucose tolerance test) to screen for gestational diabetes mellitus at 24-28 weeks gestation for all pregnant women.” [Weak]
- “We suggest that pregnant women with an unexplained elevation of maternal serum alpha-fetoprotein be evaluated and counseled by a qualified obstetric provider due to increased risk for adverse perinatal outcomes.” [Weak]
- “We recommend against routine screening for preterm delivery using the fetal fibronectin test in asymptomatic women.” [Strong, against]
- “We recommend considering the use of fetal fibronectin testing as a part of the evaluation strategy in women between 24 and 34 6/7 weeks gestation with signs and symptoms of preterm labor, particularly in facilities where the result might affect management of delivery.” [Strong]
- “We suggest that women who have undergone bariatric surgery should be evaluated for nutritional deficiencies and need for nutritional supplementation where indicated (e.g., vitamin B12, folate, iron, calcium).” [Weak]

Health Resources & Services Administration (HRSA)
The HRSA-supported Women’s Preventive Services Initiative (HRSA, 2017) recommends the following:
- Screening pregnant women for gestational diabetes mellitus after 24 weeks of gestation (preferably between 24 and 28 weeks of gestation)
- Women with risk factors for diabetes mellitus be screened for preexisting diabetes before 24 weeks of gestation—ideally at the first prenatal visit

State and Federal Regulations, as applicable
The FDA has approved many tests for conditions that can be included in a prenatal screening, such as HSV, chlamydia, gonorrhea, syphilis, and diabetes. A search of the FDA Devices database of “HSV” on 02/03/2020 yielded 108 results. Likewise, a search of “chlamydia” and “syphilis” had 143 and 36 records, respectively. “Neisseria” and “gonorrhea” yielded a combined 59 records of approved FDA devices as of 02/03/2020. “Diabetes” returned 160 records of FDA-approved devices as of the same date.

Additionally, many labs have developed specific tests that they must validate and perform in house. These laboratory-developed tests (LDTs) are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA ’88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared this test; however, FDA clearance or approval is not currently required for clinical use.

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Applicable service codes: 80081, 80055, 81001, 81002, 81003, 81007, 81015, 81171, 81172, 81200, 81209, 81241, 81242, 81243, 81244, 81251, 81252, 81253, 81254, 81255, 81257, 81260, 81290, 81329, 81330,
Prenatal Screening AHS – G2035

81336, 81337, 81400, 81401, 81403, 81404, 81405, 81406, 81412, 81420, 81430, 81431, 81443, 81479, 81507, 82677, 82731, 82947, 82950, 82951, 82962, 83020, 83021, 83036, 84443, 84999, 85004, 85007, 85009, 85014, 85025, 85027, 85032, 85041, 85048, 86480, 86580, 86592, 86593, 86631, 86632, 86701, 86702, 86703, 86762, 86787, 86780, 86803, 86804, 86850, 86900, 86901, 87077, 87081, 87086, 87088, 87110, 87270, 87320, 87340, 87490, 87491, 87590, 87591, 87592, 87653, 87800, 87802, 87810, 87850, G0306, G0307, G0432, G0433, G0435, G0472, S3844, S3845, S3846, S3849, S3850, and S3652

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.

Scientific Background and Reference Sources

Prenatal Screening AHS – G2035

Specialty Matched Consultant Advisory Panel 04/2020

Policy Implementation/Update Information

1/1/19 New policy developed. BCBSNC will provide coverage for prenatal screening when it is determined to be medically necessary because the medical criteria and guidelines are met. Medical Director review 1/1/2019. Policy noticed 1/1/2019 for effective date 4/1/2019. (an)
Prenatal Screening AHS – G2035

6/11/19 Reviewed by Avalon 1st quarter 2019 CAB. Updated Description section. Added Item 3.I to “When Covered” section: Next generation sequencing (NGS) panel testing of either Ashkenazi Jewish related disorders panel or panethnic carriers screening panel of 15 tests as long as a single appropriate AMA genetic sequencing procedure test code is submitted. Added codes 81507 and 0009M to Billing/Coding section. Medical Director review 5/2019. (an)

7/1/19 Correction to Billing/Coding section: code 81420 does not require PPA. (an)

12/31/19 Correction to Billing/Coding section: code 0009M deleted. Coding grid removed, and codes listed. No change to policy statement. (eel)

5/12/20 Reviewed by Avalon 1st quarter 2020 CAB. Medical Director review 4/2020. Specialty Matched Consultant Advisory Panel review 4/29/2020. Updated Description, Policy Guidelines, Coding and References. “Reimbursement is not allowed for carrier screening more than once per lifetime.” added to When not covered section. Added Note 1 for clarity concerning proper carrier screening testing. Note 1 reads as follows: “Carrier testing should be performed using the most appropriate carrier test (e.g. dosage/deletion for SMN1 and NOT full gene sequencing; DMD del/dup testing and NOT full gene sequencing).” Changed Panel testing of carrier status for biological father from investigational to does not meet coverage criteria. Medical necessity language updated to reimbursement language. (eel)

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.