Hepatitis C AHS – G2036

Description of Procedure or Service

Description

Hepatitis C is a liver infection caused by the Hepatitis C virus (HCV). Hepatitis C is a blood-borne virus that can be spread via sharing needles or other equipment to inject drugs as well as in inadequate infection control in healthcare settings (CDC, 2016).

Hepatitis C causes liver disease and inflammation. Chronic HCV infection can lead to hepatic damage, including cirrhosis and hepatocellular carcinoma, and is the most common cause of liver transplantation in the United States (AASLD, 2015).

Literature Review

The Centers for Disease Control and Prevention estimates 3.5 million people in the United States have chronic hepatitis C. Prevalence of the infection is highest in individuals born between 1945 and 1965. This rate is approximately 6 times higher than that seen in other adult age groups, and the CDC estimated approximately 41,200 new infections occurring each year (CDC, 2016). HCV infection is the most common reason for liver transplantation in adults in the U.S. and may lead to hepatocellular carcinoma (S. Chopra, 2018).

It is estimated that 20% of people with HCV infection will develop cirrhosis, and nearly 5% will die from liver disease resulting from HCV infection. The number of deaths from hepatitis is increasing and is projected to continue to increase for several more decades unless treatment is scaled up considerably (Razavi, 2014). Although HCV infection is common, it is estimated that 50-75% of individuals who are infected are unaware of their infection as symptoms are absent or nonspecific until much later, and therefore do not receive the care and treatment that can mitigate progression to severe liver disease and possibly death (Hagan, 2006; Rein et al., 2012).

HCV is spread through exposure to blood of infected individuals. Such exposure includes injection drug use, blood transfusions (prior to 1992), and to a lesser extent, high-risk sexual behaviors. Additionally, being born to a HCV-infected mother, hemodialysis, intranasal drug use, tattoos, incarceration, needle sticks, and invasive procedures (prior to implementation of universal precautions) are also associated with increased risk of HCV infection. Some countries are experiencing a recent resurgence of HCV infection among young intravenous drug users and HIV-infected homosexual men (CDC, 2015a; Wandeler, 2015).

HCV is a small, positive-stranded RNA-enveloped virus with a highly variable genome (Simmonds, 2001). Assessment of HCV genotype is crucial for management of HCV infection. There are currently six major genotypes of HCV, and major treatment decisions (regimen, dosing, duration) vary from genotype to genotype (S. Chopra, Arora, Sanjeev, 2018a). Some regimens for one
Hepatitis C AHS – G2036

genotype (such as ledipasvir-sofosbuvir [“Harvoni”] for genotype 1) may not be effective for another (in this case, Harvoni may be used for genotypes 1, 4, 5, and 6 but not 2 or 3) (S. Chopra, Muir, Andrew, 2018; Lexicomp, 2019).

Management of HCV infection typically involves monitoring the effect of treatment. The goal of treatment is to achieve a “sustained virologic response” (SVR), which is defined as “an undetectable RNA level 12 weeks following the completion of therapy”. This measure is a proxy for elimination of HCV RNA. The assessment schedule may vary regimen to regimen, but the viral load is generally evaluated every few weeks (S. Chopra, Pockros, Paul, 2018).

HCV is frequently asymptomatic, necessitating the need of strong screening procedures. As many as 50% of HCV-infected individuals are unaware of their diagnosis, and risk factors such as drug use or blood transfusions may increase risk of acquiring an HCV infection. Several expert groups, such as the CDC, have delineated screening recommendations in order to provide better care against the virus (S. Chopra, Arora, Sanjeev, 2018b).

Clinical Validity and Utility

Messina et al performed a meta-analysis on the prevalence of HCV genotypes worldwide. The authors evaluated 1217 studies encompassing approximately 90% of the global population. They calculated genotype 1 to comprise 83.4 million cases (46.2% of all HCV cases), genotype 3 to comprise 54.3 million cases (30.1%), and genotypes 2, 4, and 6 to comprise a combined 22.8% cases. Genotype 5 comprised less than 1% of HCV cases. The diversity of genotypes also varied; the highest diversity is observed in China and South-East Asia, while in some countries, such as Egypt and Mongolia, almost all HCV infections are caused by a single genotype (Messina et al., 2015).

Inoue et al described four HCV patients whose treatment failed. These four HCV patients had received a treatment regimen of daclatasvir plus asunaprevir, which is used for genotype 1b. However, these four patients were re-tested and found to have a different genotype; 3 patients had genotype 2 and the 4th patient had genotype 1a. The authors suggested that the daclatasvir plus asunaprevir regimen was ineffective for patients without genotype 1b (Inoue et al., 2017).

Moreno et al performed a cost analysis of expanded HCV coverage. Two scenarios were simulated, one with expanded fibrosis coverage to stage 2 fibrosis, and the other to all fibrosis cases. Over a 20-year simulation, treatment costs increased, but private payers experienced overall savings of $10 billion to $14 billion after treatment costs. A positive “spillover” benefit of $400 million to Medicare was seen in the 5-year model, and a benefit of $7 billion to Medicare was seen in the 20-year model (Moreno et al., 2016).

Linthicum et al assessed the cost-effectiveness of expanding screening and treatment coverage over a 20-year horizon. The authors investigated three scenarios, each of which expanded coverage to a different stage of fibrosis. “Net social value” was the primary outcome evaluated, and it was calculated “value of benefits from improved quality-adjusted survival and reduced transmission minus screening, treatment, and medical costs”. Overall, the scenario with only fibrosis stage 3 and fibrosis stage 4 covered generated $0.68 billion in social value, but the scenario with all fibrosis patients (stages 0-4) treated produced $824 billion in social value. The authors also noted that the scenario with all fibrosis stages covered created net social value by year 9 whereas the scenario with only stages 3 and 4 covered needed all 20 years to break even (Linthicum et al., 2016).

Applicable Federal Regulations

A search on the FDA website for “Hepatitis C” on May 16, 2019, yielded 22 results. Additionally, many labs have developed specific tests that they must validate and perform in house. These laboratory-developed tests (LDTs) are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA...
Hepatitis C AHS – G2036

*88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared this test; however, FDA clearance or approval is not currently required for clinical use.

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for Hepatitis C testing when it is determined the medical criteria or reimbursement guidelines below are met.

Benefits Application

This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Hepatitis C testing is covered

Reimbursement for a one-time screening for Hepatitis C infection is allowed for persons born between 1945 and 1965.

Reimbursement for testing for Hepatitis C infection is allowed in the following situations:
- Illicit drug use: injection (current or ever, including those who injected only once)
- Illicit drug use: intranasal
- Receipt of clotting factor concentrates produced before 1987
- History of or current hemodialysis
- Evidence of liver disease (based on clinical presentation or persistently abnormal alanine aminotransferase (ALT) levels)
- Presence of HIV infection
- Receipt of an organ transplant
- Receipt of a blood transfusion or blood component before 1992.
- History of incarceration
- Receipt of a tattoo in an unregulated setting

Reimbursement for HCV-testing based on a recognized exposure is allowed for:
- Healthcare, emergency medical, and public safety workers after needle sticks, sharps, or mucosal exposures to HCV-positive blood
- Children born to HCV-positive women
- Current sexual partners of HCV-infected persons

Reimbursement for one time testing for HCV genotype is allowed prior to initiation of treatment to guide selection of the most appropriate antiviral regimen.

In patients with acute HCV infection, monitoring HCV RNA reimbursement is allowed to determine spontaneous clearance of HCV infection versus persistence of infection. Testing can be performed every 4 to 8 weeks for 6 to 12 months.

Reimbursement for testing for HCV viral load, using a quantitative nucleic acid test, is allowed in the following situations:
- prior to initiation of HCV therapy, AND
- after 4 weeks of therapy AND
- at the end of treatment AND
- 12 weeks and 24 weeks after completion of treatment.
Hepatitis C AHS – G2036

When Hepatitis C testing is not covered

Reimbursement is not allowed for Hepatitis C testing in all situations not outlined above.

Policy Guidelines

Centers for Disease Control and Prevention (CDC)

The Centers for Disease Control and Prevention (CDC) recommends HCV testing in the following individuals:

- Adults born from 1945 through 1965 should be tested once (without prior ascertainment of HCV risk factors)
- HCV testing is recommended for those who:
 - Currently injecting drugs
 - Ever injected drugs, including those who injected once or a few times many years ago
 - Have certain medical conditions, including persons:
 - who received clotting factor concentrates produced before 1987
 - who were ever on long-term hemodialysis
 - with persistently abnormal alanine aminotransferase levels (ALT)
 - who have HIV infection
 - Were prior recipients of transfusions or organ transplants, including persons who:
 - were notified that they received blood from a donor who later tested positive for HCV infection
 - received a transfusion of blood, blood components, or an organ transplant before July 1992
- HCV testing based on a recognized exposure is recommended for:
 - Healthcare, emergency medical, and public safety workers after needle sticks, sharps, or mucosal exposures to HCV-positive blood
 - Children born to HCV-positive women

Note: For persons who might have been exposed to HCV within the past 6 months, testing for HCV RNA or follow-up testing for HCV antibody is recommended.

Individuals for whom routine HCV testing is of uncertain need include:

- Recipients of transplanted tissue (e.g., corneal, musculoskeletal, skin, ova, sperm)
- Intranasal cocaine and other non-injecting illegal drug users
- Persons with a history of tattooing or body piercing
- Persons with a history of multiple sex partners or sexually transmitted diseases
- Long-term steady sex partners of HCV-positive persons

Routine HCV testing is not recommended (unless an additional risk factor is identified) in:

- Health care, emergency medical, and public safety workers
- Pregnant women
- Household (non-sexual) contacts of HCV-positive persons
- The general population (CDC, 2015b)

The CDC also notes that the initial HCV test should be “with an FDA-approved test for antibody to HCV.” A positive result for the HCV antibody indicates either a current infection or previous infection that has resolved. For those individuals, the CDC recommends testing by an FDA-approved HCV nucleic acid test (NAT) to differentiate between active infection and resolved infection. “Persons who test anti-HCV positive or have indeterminate antibody test results who are also positive by HCV NAT should be considered to have active HCV infection; these persons need
Hepatitis C AHS – G2036

referral for further medical evaluation and care”. Finally, the CDC also recommends repeat testing for individuals with ongoing risk behaviors (CDC, 2012).

United States Preventive Services Task Force (USPSTF, 2013)

The United States Preventive Services Task Force (USPSTF, 2016) recommends HCV screening in persons at high risk for infection as well as a one-time screening for individuals born between 1945 and 1965. The USPSTF also recommends anti–HCV antibody testing followed by confirmatory polymerase chain reaction testing for detection of chronic HCV infection (USPSTF, 2016).

Individuals at high risk for infection include:

- Past or current injection drug use
- Receipt of a blood transfusion prior to 1992
- Long-term hemodialysis
- Being born to an HCV-infected mother
- Incarceration
- Intranasal drug use
- Receipt of an unregulated tattoo
- Other percutaneous exposure (e.g., needlestick in health care personnel, surgical procedure prior to the use of universal precautions)

American Association for the Study of Liver Diseases (AASLD) and the Infectious Disease Society of America (IDSA)

- AASLD-IDSA guidelines recommend testing in the following situations: One-time HCV testing is recommended for persons born between 1945 and 1965, (regardless of country of birth) without prior ascertainment of risk. Rating: Class I, Level B
- Other persons should be screened for risk factors for HCV infection, and one-time testing should be performed for all persons with behaviors, exposures, and conditions associated with an increased risk of HCV infection.

1. Risk behaviors
 - Injection-drug use (current or ever, including those who injected once)
 - Intranasal illicit drug use

2. Risk exposures
 - Persons on long-term hemodialysis (ever)
 - Persons with percutaneous/parenteral exposures in an unregulated setting
 - Healthcare, emergency medical, and public safety workers after needlesticks, sharps, or mucosal exposures to HCV-infected blood
 - Children born to HCV-infected women
 - Prior recipients of transfusions or organ transplants, including persons who:
 - Were notified that they received blood from a donor who later tested positive for HCV infection
 - Received a transfusion of blood or blood components, or underwent an organ transplant before July 1992
 - Received clotting factor concentrates produced before 1987
 - Persons who were ever incarcerated

3. Other considerations
 - HIV infection
 - Sexually active persons about to start pre-exposure prophylaxis (PreP) for HIV
 - Unexplained chronic liver disease and/or chronic hepatitis including elevated alanine aminotransferase levels
 - Solid organ donors (deceased and living)

Rating: Class I, Level B
Hepatitis C AHS – G2036

Recommendations for Follow-up of Initial Testing

- “An HCV-antibody test is recommended for initial HCV testing, and if the result is positive, current infection should be confirmed by a sensitive HCV RNA test.” Rating: Class I, Level A
- “Among persons with a negative HCV-antibody test who are suspected of having liver disease, testing for HCV RNA or follow-up testing for HCV antibody is recommended if exposure to HCV occurred within the past six months; testing for HCV RNA can also be considered in persons who are immunocompromised.” Rating: Class I, Level C
- “Among persons at risk of reinfection after previous spontaneous or treatment-related viral clearance, initial HCV-RNA testing is recommended because an HCV-antibody test is expected to be positive.” Rating: Class I, Level C
- “Quantitative HCV-RNA testing is recommended prior to the initiation of antiviral therapy to document the baseline level of viremia (ie, baseline viral load).” Rating: Class I, Level A
- “Testing for HCV genotype is recommended to guide selection of the most appropriate antiviral regimen.” Rating: Class I, Level A
- “If found to have positive results for anti-HCV test and negative results for HCV RNA by polymerase chain reaction (PCR), persons should be informed that they do not have evidence of current (active) HCV infection.” Rating: Class I, Level A (AASLD-IDSA, 2018a).

For acute HCV infections, AASLD-IDSA issued the following recommendations:
- HCV antibody and HCV RNA testing are recommended when acute HCV infection is suspected due to exposure, clinical presentation, or elevated aminotransferase levels (Rating: Class I, Level C)
- Regular laboratory monitoring is recommended in the setting of acute HCV infection. Monitoring HCV RNA (eg, every 4 weeks to 8 weeks) for 6 months to 12 months is also recommended to determine spontaneous clearance of HCV infection versus persistence of infection (Rating: Class I, Level B)
- If a decision has been made to initiate treatment during the acute infection period, monitoring HCV RNA for at least 12 weeks to 16 weeks before starting treatment is recommended to allow for spontaneous clearance (Rating: Class IIa, Level C) (AASLD-IDSA, 2017).

For monitoring patients who are starting hepatitis C treatment, are on treatment, or have completed therapy, AASLD-IDSA issued the following recommendations:
- “HCV genotype and subtype and quantitative HCV RNA (HCV viral load) is recommended prior to initiation of antiviral therapy.” (Rating: Class I, Level C)
- “Hepatic function panels (defined as albumin, total and direct bilirubin, alanine aminotransferase [ALT], aspartate aminotransferase [AST], and alkaline phosphatase levels) are recommended before starting antiviral therapy.” (Rating: Class I, Level C)
- “Quantitative HCV viral load testing is recommended after 4 weeks of therapy and at 12 weeks following completion of therapy.” (Rating: Class I, Level B)
- “Quantitative HCV viral load testing can be considered at the end of treatment and 24 weeks or longer following the completion of therapy.” (Rating: Class I, Level B)
- Hepatic function panels are also recommended for monitoring of disease progression every 6 to 12 months in patients that did not achieve an SVR (AASLD-IDSA, 2018b).

American Association for the Study of Liver Diseases (AASLD)

AASLD recommends not repeating Hepatitis C viral load testing outside of antiviral therapy, stating that “the results of virologic testing do not change clinical management or outcomes” (AASLD, 2014).
Hepatitis C AHS – G2036

World Health Organization (WHO)

Recommendations on screening for HCV infection (WHO, 2017):

<table>
<thead>
<tr>
<th>Testing approach</th>
<th>Recommendations</th>
</tr>
</thead>
</table>
| Focused testing in most affected populations | In all settings (and regardless of whether delivered through facility- or community based testing), it is recommended that serological testing for HCV antibody (antiHCV) be offered with linkage to prevention, care and treatment services to the following:
• Adults and adolescents from populations most affected by HCV infection (i.e. who are either part of a population with high HCV seroprevalence or who have a history of exposure and/or high-risk behaviors for HCV infection);
• Adults, adolescents and children with a clinical suspicion of chronic viral hepatitis (i.e. symptoms, signs, laboratory markers) (strong recommendation, low quality of evidence)
Note: Periodic re-testing using HCV NAT should be considered for those with ongoing risk of acquisition or reinfection. |
| General population testing | In settings with a ≥2% (intermediate) or ≥5% (high) HCV antibody seroprevalence in the general population, it is recommended that all adults have access to and be offered HCV serological testing with linkage to prevention, care and treatment services.
General population testing approaches should make use of existing community- or facility-based testing opportunities or programs such as HIV or TB clinics, drug treatment services and antenatal clinics (conditional recommendation, low quality of evidence) |

Canadian Association for the Study of the Liver (CASL, 2018)

The CASL has published new guidelines regarding management of HCV.

“Determination of HCV RNA, genotype and subtype (i.e., 1a v. 1b) is helpful in the management of patients with chronic HCV infection, and genotyping before starting therapy is still recommended.” Assessment of HCV genotype, HCV RNA, and resistance testing are recommended as part of initial workup (i.e. before initiation of therapy).

“In those with ongoing risk exposures, annual HCV RNA testing to assess for reinfection is suggested” (Shah et al., 2018).

American Gastroenterological Association (AGA, 2017)

The AGA released best practice statements for care of patients with chronic HCV that have achieved a sustained virologic response (SVR).

• “SVR should be confirmed by undetectable HCV RNA at 12 weeks after completion of an all-oral DAA treatment regimen.”
• “Routine confirmation of SVR at 48 weeks post end of treatment is recommended. Testing for HCV RNA at 24 weeks post treatment should be considered on an individual patient basis.”
• “Routine testing for HCV RNA beyond 48 weeks after end of treatment to evaluate for late virologic relapse is not supported by available evidence; periodic testing for HCV RNA is recommended for patients with ongoing risk factors for reinfection” (Jacobson, Lim, & Fried, 2017).

The AGA has also released a “pathway” for HCV treatment (an algorithm).
Hepatitis C AHS – G2036

Prior to treatment, the AGA recommends identifying the HCV genotype, as well as taking a hepatic function panel (defined as albumin, total and direct bilirubin, alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase).

For all three lengths of treatment courses (8, 12, 16 weeks), the AGA recommends assessing viral load and liver function (the same hepatic panel listed above) (Kanwal et al., 2017).

European Association for the Study of the Liver (EASL, 2018)

The EASL released guidelines on treatment of Hepatitis C. The EASL recommends:

- Screening of “populations at risk of infection, birth cohort testing, and general population testing in areas of intermediate to high seroprevalence (≥2%–5%)”
- “Liver disease severity must be assessed prior to therapy”.
- “HCV genotype and genotype 1 subtype must be assessed prior to treatment initiation. However, “testing for HCV resistance prior to treatment is not recommended” (EASL, 2018).

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Applicable service codes: 86803, 86804, 87520, 87521, 87522, 87902, G0472

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.

Scientific Background and Reference Sources

Hepatitis C AHS – G2036

Hepatitis C AHS – G2036

Hepatitis C AHS – G2036

WHO. (2017). GUIDELINES ON HEPATITIS B AND C TESTING.

Policy Implementation/Update Information

1/1/19 New policy developed. BCBSNC will provide coverage for hepatitis C testing when it is determined to be medically necessary because the medical criteria and guidelines are met. Medical Director review 1/1/2019. Policy noticed 1/1/2019 for effective date 4/1/2019. (sk)

10/29/19 Wording in the Policy, When Covered, and/or Not Covered section(s) changed from Medical Necessity to Reimbursement language, where needed. (gm)

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.