Corporate Medical Policy

Genetic Testing for FMR1 Mutations AHS – M2028

File Name: genetic_testing_for_fmr1_mutations
Origination: 01/01/2019
Last CAP Review: 03/2020
Next CAP Review: 03/2021
Last Review: 03/2020

Description of Procedure or Service

Definitions
Fragile X syndrome (FXS) is an X-linked disorder resulting from loss of function mutation of the Fragile X Mental Retardation-1 (FMR1) gene (Saul & Tarleton, 1993), and the most common heritable cause of intellectual disability (Coffee et al., 2009). FMR1-related disorders include fragile X syndrome, fragile X-associated tremor/ataxia syndrome (FXTAS), and FMR1-related primary ovarian insufficiency (FRPOI). Fragile X syndrome results in a range of physical, cognitive, and behavioral effects of variable severity (Mila, Rodriguez-Revenga, & Matilla-Duenas, 2016), generally characterized by moderate intellectual disability and autistic characteristics in affected males and mild intellectual disability, emotional and/or psychiatric problems in affected females (Mila et al., 2016; Monaghan, Lyon, Spector, & American College of Medical, 2013).

Background
Fragile X Syndrome (FXS) and related disorders affect more than two million people worldwide, 1 in 5000 males (Coffee et al., 2009) and about half that in females (Coffee et al., 2009; Saul & Tarleton, 1993). Transmitted as an X-linked dominant trait with reduced penetrance, FXS is associated with a fragile site on the X chromosome (Yu et al., 1991) identified as the Fragile X Mental Retardation-1 (FMR1) gene (Santoro, Bray, & Warren, 2012). The protein encoded by FMR1 (FMRP) is a multifunctional RNA-binding protein that regulates the translation of a subset of dendritic mRNAs and plays a central role in neuronal development and synaptic plasticity (An tar, Li, Zhang, Carroll, & Bassell, 2006; Ascano et al., 2012; Bechara et al., 2009; Castagnola et al., 2018; Didiot et al., 2008; Kenny et al., 2014; Parvin et al., 2018; Yang et al., 2018).

The absence of FMRP results in excessive and persistent mGluR-mediated protein synthesis in postsynaptic dendrites, dysregulation of ion homeostasis, and disruption of calcium ion homeostasis leading to abnormal synaptic signaling and dendritic development (Bear, Huber, & Warren, 2004; Castagnola et al., 2018; Finucane et al., 2012). The typical clinical phenotype includes intellectual disability, social impairment, autism spectrum disorder, speech and language delay, neurological dysfunction (seizures and abnormal sleep patterns), sensory hypersensitivity (Rais, Binder, Razak, & Ethell, 2018), and a characteristic physical appearance that typically develops in the second decade of life (Hersh & Saul, 2011).

Any genetic alteration which results in a lack of functional FMRP can result in FXS symptoms; however, the most common type of mutation of FMR1 is the expansion of a CGG trinucleotide repeat in the 5’ untranslated region of the gene (Jin & Warren, 2000). Normally, this repeat ranges in size from 7 to ~60, with 30 being most common (Peprah, 2012). The full mutation consists of expansions of over 200 repeats which become abnormally hypermethylated, silencing the FMR1 gene and expression of FMRP (Maurin, Zongaro, & Bardoni, 2014; Oberle
Genetic Testing for FMR1 Mutations AHS – M2028

et al., 1991). Molecular clinical correlations have shown that phenotype is related to methylation status and degree of mosaicism rather than the number of repeats (Hersh & Saul, 2011).

Alleles with between 60 and 200 CGG are generally unmethylated with normal transcript and protein level, but they are extremely unstable during transmission to next generation and, therefore, referred to as premutations (Heitz, Devys, Imbert, Kretz, & Mandel, 1992; Jin & Warren, 2000). Expansions in premutation carriers have also been shown to be associated with primary ovarian failure (FRPOI) (Man, Lekovich, Rosenwaks, & Gerhardt, 2017) and tremor ataxia syndrome (FXTAS) (Hagerman & Hagerman, 2013; Liu, Winarni, Zhang, Tassone, & Hagerman, 2013). A spectrum of neurological, psychological, endocrine, and immune-related characteristics has also been documented with increased frequency in carriers (Hagerman & Hagerman, 2013; Raspa et al., 2018). Premutation carriers have elevated levels of mRNA, even when relatively normal levels of FMRP are being produced, resulting in mRNA toxicity with sequestration of proteins and mitochondrial dysfunction (Garcia-Arocena & Hagerman, 2010; Tassone et al., 2000).

Approximately twenty individuals have been reported with rare missense or nonsense mutations or other coding disturbances of the FMR1 gene and physical, cognitive, and behavioral features similarly seen in FXS (Sitzmann, Hagelstrom, Tassone, Hagerman, & Butler, 2018). Recent studies of other FMR mutations that can affect the level and function of the protein include analysis of SNPs showing that 31.66% of the FMR1 gene SNPs were disease-related and that 50% of SNPs from online databases had a pathogenic effect (Tekcan, 2016). Screening of 508 males with clinical signs of mental retardation and developmental delay, but without CGG and GCC repeat expansions in the FMR1 gene, revealed 2 missense mutations in the FMR1 gene that would have not been diagnosed with standard molecular testing for FXS (Handt et al., 2014).

Clinical Validity and Utility

As the clinical phenotype of FMR related diseases can be subtle, its detection especially in the prepubertal period can be difficult. Although phenotypic symptoms are not obvious at birth, both animal and neuroimaging studies suggest that the effects of FXS begin in the prenatal period (Riley & Wheeler, 2017). Families report significant delays in diagnosis of FXS with 24% of families reporting that they had seen a health care provider more than 10 times before testing. On average someone first became concerned about the child's development at an average age of 13 months, however professional confirmation of a developmental delay did not occur until an average age of 21 months, and a FXS diagnosis occurred at an average age of nearly 32 months. Meanwhile, many families had additional children with FXS before becoming aware of the reproductive risk (Bailey, Skinner, & Sparkman, 2003). Establishing a diagnosis of FXS allows for an understanding of the disorder and focus on appropriate management strategies. Psychopharmacologic intervention to modify behavioral problems such as attentional deficits, impulse control, anxiety and emotional lability in a child with fragile X syndrome can be an important in addition to speech therapy, occupational therapy, special educational services, and behavioral interventions (Hersh & Saul, 2011). A recent pilot of allopregnanolone in six males with FXTAS showed significant improvement in GABA metabolism, oxidative stress, and some of the mitochondria-related outcomes (Napoli et al., 2018).

While many fragile X testing methods have been developed, no single approach can characterize all aspects of FMR1 mutations and expansions, especially when mosaicism is taken into consideration (Monaghan et al., 2013). In a diagnostic setting it is important to not only detect presence of the CGG expansion, but to also determine its size and methylation status (Lim et al., 2017). Molecular diagnostic testing of FMR1 currently relies on a combination of polymerase chain reaction (PCR) and Southern blot (the gold standard) for the CGG-repeat expansion and methylation analyses (Rajan-Babu & Chong, 2016). Detection of rare point
Genetic Testing for FMR1 Mutations AHS – M2028

mutations and deletions requires sequence analysis (Sitzmann et al., 2018; Suhl & Warren, 2015). This has limited the ability to implement any type of population screening (Riley & Wheeler, 2017).

CGG repeat-primed PCR designed to detect the full range of fragile X expanded alleles followed by analysis via capillary electrophoresis (Chen et al., 2010; Lyon et al., 2010) and melt curve techniques (Rajan-Babu et al., 2015; Teo, Law, Lee, & Chong, 2012) minimizes the need for southern blot analysis. The FastFraX FMR1 test was recently evaluated in 198 archived clinical samples, yielding results of 100% sensitivity (95% CI, 91.03% to 100%) and 100% specificity (95% CI, 97.64% to 100%) in categorizing patient samples into the respective normal, intermediate, premutation, and full mutation genotypes (Lim et al., 2017).

Immunohistochemical detection of FMRP has been validated in lymphocytes and chorionic villi samples as an alternative prenatal diagnostic method for detection of full mutations in male fetuses; however, staining is more complex in female fetuses due to X-inactivation and is insufficient for diagnostic use (Oostra & Willemensen, 2001; Willemensen, Bontekoe, Severijnen, & Oostra, 2002). Clinical and analytical specificity and sensitivity of cytogenetic analysis for FXS are both insufficient (Monaghan et al., 2013).

Applicable Federal Regulations

Many labs have developed specific tests that they must validate and perform in house. These laboratory-developed tests (LDTs) are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA ’88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared this test; however, FDA clearance or approval is not currently required for clinical use.

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for genetic testing for FMR1 mutations when it is determined the medical criteria or reimbursement guidelines below are met.

Benefits Application

This medical policy relates only to the services or supplies described herein. Please refer to the Member’s Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Genetic Testing for FMR1 Mutations is covered

1. Reimbursement is allowed for genetic counseling for individuals undergoing FMR1 gene testing. Pre- and post-test genetic counseling is recommended for individuals undergoing FMR1 gene testing.

2. Diagnostic genetic testing for FMR1 gene CGG repeats and methylation status is considered medically necessary for:
 A. Males and females with unexplained mental retardation, developmental delay, or autism spectrum disorder, OR
 B. Symptomatic individuals with features of Fragile X syndrome or a family history of Fragile X syndrome, OR
Genetic Testing for FMR1 Mutations AHS – M2028

C. Females with unexplained ovarian insufficiency, unexplained ovarian failure, or unexplained elevated FSH prior to age 40, OR
D. Individuals with unexplained late-onset tremor-ataxia, OR
E. Fetuses of known FMR1 premutation or full mutation carriers

3. Carrier screening for FMR1 gene CGG repeat length is considered medically necessary for individuals seeking pre-conception or prenatal care when:
 A. There is a family history of Fragile X syndrome, OR
 B. There is a family history of unexplained mental retardation, developmental delay, or autism spectrum disorder, OR
 C. There is a family history of unexplained late-onset tremor ataxia, OR
 D. There is a family history of unexplained premature ovarian insufficiency or failure.

When Genetic Testing for FMR1 Mutations is not covered

Determination of FMR1 gene point mutations is considered not medically necessary.

Determination of FMR1 gene deletion is considered not medically necessary.

Population screening for Fragile X syndrome is considered not medically necessary.

Cytogenetic testing for Fragile X syndrome is considered not medically necessary.

Testing for the FMRP protein is considered not medically necessary.

Policy Guidelines

Guidelines and Recommendations

American College of Medical Genetics and Genomics (ACMG)

The American College of Medical Genetics and Genomics (ACMG) recommends Fragile X syndrome molecular genetic testing for (Kronquist, Sherman, & Spector, 2008; Monaghan et al., 2013; Sherman, Pletcher, & Driscoll, 2005):

Fragile X Syndrome:

- Individuals of either sex with mental retardation, developmental delay or autism, especially if they have
 - Any physical or behavioral characteristics of fragile X syndrome,
 - A family history of fragile X syndrome, or
 - Male or female relatives with undiagnosed mental retardation.
- Individuals seeking reproductive counseling who have
 - A family history of fragile X syndrome or
 - A family history of undiagnosed mental retardation.
- Fetuses of known carrier mothers.
- Affected individuals or their relatives in the context of a positive cytogenetic fragile X test result who are seeking further counseling related to the risk of carrier status among themselves or their relatives. The cytogenetic test was used prior to the identification of the FMR1 gene and is significantly less accurate than the current DNA test. DNA
Genetic Testing for FMR1 Mutations AHS – M2028

...testing on such individuals is warranted to accurately identify premutation carriers and to distinguish premutation from full mutation carrier women.

Ovarian dysfunction:

- Women who are experiencing reproductive or fertility problems associated with elevated follicle stimulating hormone (FSH) levels, especially if they have
 - A family history of premature ovarian failure,
 - A family history of fragile X syndrome, or
 - Male or female relatives with undiagnosed mental retardation.

Tremor/ataxia syndrome:

- Men and women who are experiencing late onset intention tremor and cerebellar ataxia of unknown origin, especially if they have
 - A family history of movement disorders,
 - A family history of fragile X syndrome, or
 - Male or female relatives with undiagnosed mental retardation.”

ACMG does not recommend general population carrier screening.

The American College of Obstetricians and Gynecologists

The American College of Obstetricians and Gynecologists (ACOG) published committee opinion 691 (ACOG, 2017) which recommends Fragile X premutation carrier screening for women with a family history of fragile X-related disorders or intellectual disability suggestive of fragile X syndrome and who are considering pregnancy or are currently pregnant.

If a woman has unexplained ovarian insufficiency or failure or an elevated follicle-stimulating hormone level before age 40 years, fragile X carrier screening is recommended to determine whether she has an FMR1 premutation.

All identified individuals with intermediate results and carriers of a fragile X premutation or full mutation should be provided follow-up genetic counseling to discuss the risk to their offspring of inheriting an expanded full-mutation fragile X allele and to discuss fragile X-associated disorders (premature ovarian insufficiency and fragile X tremor/ataxia syndrome).

Prenatal diagnostic testing for fragile X syndrome should be offered to known carriers of the fragile X premutation or full mutation.

National Society of Genetic Counselors

The National Society of Genetic Counselors published guidelines (Finucane et al., 2012) which recommend: “Centers offering population screening should ensure that they have the resources available to provide pre- and post-test genetic counseling that supports the psychosocial and clinical needs of the patient and family. In light of widespread FMR1 testing among women without known risk factors, genetic counselors should anticipate seeing patients who did not
receive any pre-test information, have no prior knowledge of FMR1-associated disorders, and are unprepared to learn that they have an FMR1 mutation.

Prenatal diagnosis should be offered to women with pre- or full mutations. Males with premutation alleles should receive genetic counseling about potential phenotypic risks to their daughters, all of whom will inherit premutations.

American Academy of Pediatrics Committee on Genetics

The American Academy of Pediatrics (Hersh & Saul, 2011) recommends testing for FXS in children with any of the following, particularly when associated with physical and behavioral characteristics of FXS or a relative with undiagnosed intellectual disability: Developmental delay, Borderline intellectual abilities or intellectual disability, Diagnosis of autism without a specific etiology.

European Molecular Genetics Quality Network (EMQN)

The EMQN published their best practice guidelines concerning fragile X syndrome and fragile X-associated disorders in 2015 (Biancalana, Glaeser, McQuaid, & Steinbach, 2015). They state, “Prenatal testing is not indicated for the pregnant partner of a male with a premutation...” but they do recommend offering prenatal diagnosis to any woman with 55 or more CGG repeats. “Prenatal testing may be considered for a female fetus of a full mutation father as a cautionary measure (full mutation or MoMP [mosaic premutation and full mutation] or MoMe [methylation mosaic]).” Concerning molecular diagnostic analysis in FXS and fragile X-associated disorders, they state the following:

“It is best practice to use a method which detects the whole range of expansions when testing relatives (including prenatal diagnosis) in a family with any known fragile X disorder due to expansion. When testing the FMR1 gene in population screening, the report must specify that rare cases of point mutation or deletion cannot be detected, nor rare cases of CGG expansion mosaicism (MoMN) if the method used cannot detect the whole range of expansions. It could be useful to confirm results by an independent method when detecting an expansion in an index case depending on specific pitfalls of each method (Biancalana et al., 2015).”

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Applicable service codes: 81243, 81244, 81471, 88248, 96040, S0265

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.
Genetic Testing for FMR1 Mutations AHS – M2028

Scientific Background and Reference Sources

Garcia-Arocena, D., & Hagerman, P. J. (2010). Advances in understanding the molecular basis of FXTAS. Hum Mol Genet, 19(R1), R83-89. doi:10.1093/hmg/ddq166
Genetic Testing for FMR1 Mutations AHS – M2028

Genetic Testing for FMR1 Mutations AHS – M2028

Policy Implementation/Update Information

1/1/2019 BCBSNC will provide coverage for genetic testing for FMR1 mutations when it is determined to be medically necessary because criteria and guidelines are met. Medical Director review 1/1/2019. (jd)

4/1/2019 Description, background and federal application sections updated. Policy guidelines and references updated. Added 81171 and 81172 to Billing/Coding section as these two codes were accidentally omitted from the 1/1/19 implementation. Medical Director review 4/2019. (jd)

10/29/19 Wording in the Policy, When Covered, and/or Not Covered section(s) changed from Medically Necessity to Reimbursement language, where needed. (hb)

2/11/20 Annual review by Avalon 4th Quarter 2019 CAB. Billing/Coding section: removed the following codes from the policy – 81171, 81172, 81470, 81472 and added 88248. No change to policy intent. Medical Director review 12/2019. (jd)

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.