Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

Description of Procedure or Service

Alzheimer’s disease (AD) is a neurodegenerative disease defined by a gradual decline in memory, cognitive functions, gross atrophy of the brain, and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (Karch, Cruchaga, & Goate, 2014).

Familial Alzheimer’s disease (FAD) is a rare, inherited form of Alzheimer’s disease. FAD has a much earlier onset than other forms of Alzheimer’s with symptoms developing in individuals in their thirties or forties.

Related Policies

General Genetic Testing, Germline Disorders AHS – M2145
General Genetic Testing, Somatic Disorders AHS – M2146

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for genetic testing for familial Alzheimer’s disease when it is determined the medical criteria or reimbursement guidelines below are met.

Benefits Application

This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Genetic Testing for Familial Alzheimer’s Disease is covered

Reimbursement is allowed for genetic counseling for familial Alzheimer’s disease genetic testing.

Genetic testing for APP, PSEN1 and PSEN2 genes associated with familial Alzheimer’s disease (i.e., autosomal-dominant, early-onset dementia not attributable to other factors) is considered medically necessary

• when the results of the testing will inform reproductive decision making AND
• the individual is in one of the following situations
 o Individuals with a family history of autosomal dominant dementia with one or more instances of early-onset AD, OR
Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

- Individuals with a first degree biological relative with a known mutation in the PSEN1, PSEN2, or APP genes, OR
- Symptomatic individuals with suspected early-onset AD when there is an unknown family history (adoption)

When Genetic Testing for Familial Alzheimer’s Disease is not covered

Genetic testing for Alzheimer’s disease is considered investigational in the following situations:
- Testing to confirm a diagnosis of Alzheimer’s disease (any type)
- Testing for familial Alzheimer’s disease in children
- Testing for late-onset Alzheimer’s disease (age >65 years)
- Testing for other purposes than reproductive decision making
- Testing of APOE gene and/or any other genes not listed above
- Testing for purposes of Alzheimer’s disease risk assessment
- Screening asymptomatic individuals
- Testing in all other situations not described above

Policy Guidelines

Alzheimer disease (AD) is a devastating neurodegenerative disease with a strong genetic component, and the predominant form of dementia (50–75%) (Van Cauwenberghe, Van Broeckhoven, & Slezers, 2016). In 2015, over 46 million people lived with dementia worldwide, and this number is estimated to increase to 131.5 million by 2050 (Prince, 2016). The average lifetime risk of developing Alzheimer disease is 10–12%. This risk at least doubles with the presence of a first-degree relative with the disorder (Goldman et al., 2011). The genetic predisposition of AD, even for late-onset AD patients, is estimated to be 60–80% (Gatz et al., 2006).

Most patients develop clinical symptoms after the age of 65 (spontaneous or late-onset AD), however up to 10% of patients have an earlier onset of disease (early-onset AD) (Kumar, 2018). AD is characterized by severe neuronal loss, aggregation of extracellular amyloid β plaques, and intraneuronal tau protein tangles resulting in progressive deterioration of memory and cognitive functions (Keene, 2018). Enormous burden on public health is due to the high costs associated with care and treatment. Aside from drugs that temporarily relieve symptoms, no treatment currently exists for AD (Van Cauwenbergh et al., 2016).

Autosomal dominant AD is very rare (<1%), but the discovery of fully penetrant pathogenic mutations of Amyloid precursor protein (APP) (Goate et al., 1991; St George-Hyslop et al., 1987), Presenilin 1 (PSEN1) (Sherrington et al., 1995; Van Broeckhoven et al., 1992), and Presenilin 2 (PSEN2) (Sherrington et al., 1996) inherited in an autosomal dominant fashion, has identified molecular mechanisms and pathways involved in AD pathogenesis and valuable targets currently used in diagnosis and drug development (Schneider et al., 2014; Van Cauwenbergh et al., 2016).

One of the primary features of AD is the buildup of amyloid-β protein in the brain. This protein is poisonous to neurons and is normally cleaved by secretases. However, certain genetic mutations may cause these clearing mechanisms to weaken or an overall increase in amyloid-β production. As amyloid-β starts to aggregate in the brain, it creates fibrils that ultimately cause neurological damage, such as the characteristic dementia (Keene, 2018).

APP is proteolytically processed in the constitutive pathway by α- and γ-secretases resulting in nonpathogenic fragments. However, in the amyloidogenic pathway, subsequent proteolysis of APP by β-secretase and γ-secretase gives rise to a mixture of Aβ peptides with different lengths, of which Aβ1-42 are more aggregation-prone and are predominantly present in amyloid plaques in brains of AD patients. 39 APP mutations have been described, all of which affect proteolysis of APP in favor of Aβ1-42 (Cruts, Theuns, & Van Broeckhoven, 2012).
Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

PSEN1 and **PSEN2** are highly homologous genes. Both proteins encoded by these genes are essential components of the γ-secretase complex, which catalyzes the cleavage of membrane proteins, including APP. Mutations in **PSEN1** and **PSEN2** impair the γ-secretase mediated cleavage of APP resulting in an increased proportion of Aβ1–42 (Cruts & Van Broeckhoven, 1998). PSEN1 is located on chromosome 14 whereas PSEN2 is located on chromosome 1. However, PSEN1 is generally associated with a worse prognosis; it has full penetrance compared to 95% penetrance for PSEN2, and age of onset was over 10 years earlier for PSEN1 mutations compared to PSEN2 (Ryman et al., 2014; Sherva & Kowall, 2018).

Late-onset AD is considered to be multifactorial, with a strong but complex genetic predisposition (Gatz et al., 2006) involving gene mutations and polymorphisms that may interact with each other or with environmental factors. The ε4 allele of APOE was the only major gene known to increase disease risk for both early-onset and late-onset AD. More recently, genome-wide association studies (GWAS) and massive parallel resequencing (MPS) efforts have identified at least 21 additional genetic risk loci. These loci, shown in the table below from Van Cauwenberghe et al, 2016, are estimated to explain about 28% of the heritability of liability, 30% of familial risk, and over 50% of sibling recurrence risk of developing Alzheimer's disease (Van Cauwenberghe et al., 2016).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Genes in focus</th>
<th>Possible candidate genes</th>
<th>Function</th>
<th>Pathway</th>
<th>Effect on APP or tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS4A4A/MS4A6E locus (chr11:59,268,000-60,480,00)</td>
<td>17 genes</td>
<td>MS4A2, MS4A3, MS4A4A, MS4A4E, MS4A6A, MS4A6E</td>
<td>Signal transduction</td>
<td>Immune response</td>
<td>—</td>
</tr>
<tr>
<td>HLA-DRB5/HLA-DRB1 locus (chr6:3,609,009-4,535,100)</td>
<td>17 genes</td>
<td>Not defined due to the complex genetic organization of the locus</td>
<td>Immunecompetence and histocompatibility</td>
<td>Immune response</td>
<td>—</td>
</tr>
<tr>
<td>ZCWPW1 locus (chr7:99,905,955-100,093,149)</td>
<td>10 genes</td>
<td>ZCWPW1; NYAP1; affecting brain size, neurite elongation, neuronal morphogenesis</td>
<td>Epistatic regulation; ZCWPW1; brain and neural development (NYAP1)</td>
<td>Neural development</td>
<td>—</td>
</tr>
<tr>
<td>SLC24A4/RB3 locus (chr14:92,789,411-93,176,224)</td>
<td>2 genes</td>
<td>SLC24A4; brain expression; R3N3; known interactor of B3N1 gene product</td>
<td>Neural development and regulation of blood pressure and hypertension</td>
<td>Neural development and synaptic function</td>
<td>—</td>
</tr>
<tr>
<td>NME8 locus (chr17:37,779,803-37,992,860)</td>
<td>4 genes</td>
<td>NME8; association signal adjacent to the gene</td>
<td>Ciliary functions</td>
<td>Cytoskeletal function and axonal transport</td>
<td>—</td>
</tr>
<tr>
<td>CELF1 locus (chr11:47,291,161-47,666,021)</td>
<td>10 genes</td>
<td>CELF1; MAD8; long-term neuronal viability in AD</td>
<td>RNA splicing, editing, and translation (CELF1); long-term neuronal viability (MAD8)</td>
<td>Cytoskeletal function and axonal transport</td>
<td>Tau toxicity</td>
</tr>
</tbody>
</table>

For each locus, the number of genes in each locus is shown with the possible candidate genes. The pathway, function, and effect on APP or tau pathway are reported for each locus.

APR, amyloid precursor protein; GWAS, genome-wide association studies.

Chung et al (Chung et al., 2018) conducted genome-wide pleiotropy analyses using association summary statistics. Significant findings were further examined by expression quantitative trait locus and differentially expressed gene analyses in AD vs. control brains using gene expression data. They found that pleiotropy analysis is a useful approach to identifying novel genetic associations with complex diseases and their endophenotypes. However, the authors conclude that functional studies are needed to determine whether **ECRG4** or **HDAC9** is plausible as a therapeutic target.

Clinical Validity and Utility

Early Onset AD

Comprehensive genetic counseling protocols are available for AD diagnostic and predictive testing to provide a framework for clinicians and geneticists to evaluate which patients may benefit from genetic testing. Available genetic diagnostic and predictive screening for causal mutations of early onset AD in **APP**, **PSEN1**, and **PSEN2** are only responsible for a small portion of AD patients’ risk. They account for approximately 60%-70% of familial autosomal dominant AD, but less than 10 percent of early-onset AD and less than one percent of AD overall (Sherva & Kowall, 2018). For a significant number of patients for whom genetic diagnostic screening is requested, the tests will be negative without excluding a genetic cause of disease (Van Cauwenberghe et al., 2016). Furthermore, the identification of a mutation is not a certain predictor of disease or onset age, given that these mutations can vary in terms of penetrance and gene expression. Nevertheless, the ability
Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

to identify an explanation for the clustering of AD in a family and the ability to use this toward predictive testing in subsequent generations provide an important step toward autonomy of patients and at-risk individuals (Van Cauwenberghe et al., 2016). Testing for these highly penetrant mutations often carries significant personal and familial utility which the ACMG has recently supported as important clinical utilities (ACMG, 2015a).

Jannssen et al (2003) aimed to determine the proportion of patients with early onset AD with a positive family history that had mutations in the amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes. A mutational analysis was performed in 31 probands with probable or definite AD from UK families (age at onset <61 years). 23 patients fulfilled criteria for autosomal dominant inheritance. In 17 (55%) probands the authors identified eight novel PSEN1 sequence variants and eight recognized pathogenic mutations. In 4 (13%) probands the authors identified one novel APP sequence variant (H677R) and two recognized mutations. 21 of 31 (68%) probands were associated with a sequence variant in APP or PSEN1. Nine of the 11 (82%) probands with neuropathologically confirmed autosomal dominant inheritance were associated with a sequence variant in APP or PSEN1. The 10 patients in whom the authors were unable to identify a mutation in APP, PSEN1, or PSEN2 were older than the probands with sequence variants (55.4 vs 44.7 years, respectively). The authors concluded that sequence variants in APP and PSEN1 accounted for the majority of neuropathologically confirmed autosomal dominant early-onset AD.

Shea et al conducted a study to assess the differences in clinical presentations of different genotypes of familial Alzheimer’s Disease. A total of 658 pedigrees were evaluated. The authors found that patients with PSEN1 mutations tended to have earlier age of onset than either PSEN2 or APP mutations. Patients with PSEN1 were also more commonly affected by symptoms such as seizures or myoclonus, whereas patients with PSEN2 mutations were more commonly affected by disorientation. Patients with APP mutations were more likely to present with aggression or apraxia (Shea et al., 2016).

Late Onset AD

The primary gene associated with late-onset Alzheimer’s Disease is the apolipoprotein E (APOE) gene on chromosome 19, particularly its epsilon (ɛ) allele. This apolipoprotein is thought to play a role in cholesterol homeostasis and aid in removal of the amyloid-β protein that is at the core of Alzheimer’s. There are three isoforms of this allele: ɛ2, ɛ3, and ɛ4. The ɛ4 allele binds much more rapidly to the amyloid protein; however, it is less efficient than the other two alleles in protein transfer. These characteristics combined have made the ɛ4 allele a potential genetic risk factor of AD (Sherva & Kowall, 2018).

The role of genetics in diagnosis and risk prediction in late-onset AD is much less straightforward. Despite the established evidence of APOE ɛ4 as a risk factor for AD, its value in disease prediction in a clinical setting is limited, and the relevance of clinical testing for common genetic variations identified in GWAS is even more limited. Combining multiple susceptibility loci into a global genetic risk score (GRS) might improve the prediction of individuals at risk. However, the most comprehensive risk prediction model developed to date only achieved a sensitivity of 55% and a specificity of 78%, impeding use in clinical practice (de Calignon et al., 2012; Van Cauwenberghe et al., 2016).

Neu et al performed a global meta-analysis of 27 observational studies in more than 58,000 adults and found that those with only one copy of APOE ɛ4 did not see any difference in risk of developing Alzheimer’s disease from ages 55-85. However, the authors did find that women from 65-75 with one copy of APOE ɛ4 were at higher risk than men of the same age (odds ratio of 4.37 for women, 3.14 for men). Both genders were found to have higher risk of mild cognitive impairment with any additional copies of the ɛ4 allele compared to ɛ2 or ɛ3 (Neu et al., 2017).
Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

Naj et al assessed the effect of APOE alleles on average age of onset in AD patients. 14 studies containing 9162 patients were examined, and the APOE allele was found to contribute 3.9% of the variation of age of onset. Each copy of the ε4 was found to reduce the age of onset by 2.45 years (Naj et al., 2014).

Cohn-Hokke et al examined the social and personal effects of testing for hereditary neurodegenerative diseases from 74 patient survey responds. The authors concluded that “the result of predictive testing on adult-onset neurodegenerative diseases does not have a large negative effect on social and personal life, although these observations should be interpreted with caution because of the small number of participants and low response rate (Cohn-Hokke et al., 2017).”

Applicable Federal Regulations

On April 6, 2017 the FDA approved the 23andMe PGS Genetic Health Risk Report for Late-onset Alzheimer’s Disease, indicated for reporting of the ε4 variant in the APOE gene. The report describes if a person's genetic result is associated with an increased risk of developing Late-onset Alzheimer’s Disease, but it does not describe a person's overall risk of developing Alzheimer’s Disease. The ε4 variant included in this report is found and has been studied in many ethnicities. Detailed risk estimates have been studied the most in people of European descent (FDA, 2017a).

Other tests for Alzheimer’s genes are considered laboratory developed tests (LDT); developed, validated and performed by individual laboratories. LDTs are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA’88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared these tests; however, FDA clearance or approval is not currently required for clinical use.

Guidelines and Recommendations

American College of Medical Genetics and Genomics (ACMG) and National Society of Genetic Counselors (NSGC)

The American College of Medical Genetics and Genomics (ACMG) and the National Society of Genetic Counselors (NSGC) issued joint practice guidelines related to the genetic assessment of AD. These guidelines include the following recommendations (Goldman et al, 2011):

- “Pediatric testing for AD should not occur.”
- “Prenatal testing for AD is not advised if the patient intends to continue a pregnancy with a mutation.”
- “Genetic testing for AD should only occur in the context of genetic counseling (in-person or through videoconference) and support by someone with expertise in this area. Symptomatic patients: Genetic counseling for symptomatic patients should be performed in the presence of the individual’s legal guardian or family member.”
- “DTC (direct to consumer) APOE testing is not advised.”
- “A risk assessment should be performed by pedigree analysis to determine whether the family history is consistent with EOAD [early-onset AD] or LOAD (late-onset AD) and with autosomal dominant (with or without complete penetrance), familial or sporadic inheritance.”

For families in which an autosomal dominant AD gene mutation is a possibility:

- “Testing for genes associated with early-onset autosomal dominant AD should be offered in the following situations:
 - “A symptomatic individual with EOAD in the setting of a family history of dementia or in the setting of an unknown family history (e.g., adoption).
 - “Autosomal dominant family history of dementia with one or more cases of EOAD.”
Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

- “A relative with a mutation consistent with EOAD (currently PSEN1/2 or APP).”

- “Ideally, an affected family member should be tested first. If no affected family member is available for testing and an asymptomatic individual remains interested in testing despite counseling about the low likelihood of an informative result (a positive result for a pathogenic mutation), he/she should be counseled according to the recommended protocol. If the affected relative, or their next of kin, is uninterested in pursuing tested, the option of DNA banking should be discussed.”

For families in which an autosomal dominant AD is unlikely:

- “Discuss that both sporadic and familial cases can be due to a genetic susceptibility. Risk estimates are only available for first-degree relatives of an affected individual in sporadic or familial cases.”

- “Genetic testing for susceptibility loci (e.g., APOE) is not clinically recommended due to limited clinical utility and poor predictive value. If a patient wishes to pursue testing despite genetic counseling and recommendations to the contrary, testing may be considered at the clinician’s discretion.”

Finally, the authors comment that “in general, clear genotype-phenotype correlations cannot typically be made for the three causative genes, and age of onset can vary more than 20 years within the same family” (Goldman et al., 2011).

American College of Medical Genetics and Genomics (ACMG)
In the Choosing Wisely Initiative, the ACMG recommended “Don’t order APOE genetic testing as a predictive test for Alzheimer’s disease.” The rationale for the recommended is that “APOE is a susceptibility gene for later-onset Alzheimer disease (AD), the most common cause of dementia. The presence of an ε4 allele is neither necessary nor sufficient to cause AD. The relative risk conferred by the ε4 allele is confounded by the presence of other risk alleles, gender, environment and possibly ethnicity. APOE genotyping for AD risk prediction has limited clinical utility and poor predictive value.”

American Association of Neurology (AAN)
In 2001 (reaffirmed in 2004), AAN made the following recommendation on the use of genetic testing for Alzheimer’s disease (Knopman et al, 2001):

- Routine use of APOE genotyping in patients with suspected AD is not recommended at this time (Guideline).
- There are no other genetic markers recommended for routine use in the diagnosis of AD (Guideline).

European Federation of Neurological Sciences (EFNS)
In 2010, EFNS published revised recommendations on the diagnosis and management of Alzheimer disease. It stated that “the ApoE 4 allele is the only genetic factor consistently implicated in late-onset AD, but it is neither necessary nor sufficient for development of the disease. Hence, there is no evidence to suggest ApoE testing is useful in a diagnostic setting”. The EFNS recommended that “screening for known pathogenic mutations can be undertaken in patients with appropriate phenotype or a family history of an autosomal dominant dementia. Routine Apo E genotyping is not recommended (Hort et al, 2010).”

National Institute on Aging (NIH)
In 2011, Alzheimer’s Disease diagnostic guidelines were revised including latest research results and better scientific understanding of the disease. The development of the new guidelines was led by the National Institute of Health and the Alzheimer’s Association. Diagnostic criteria for Alzheimer’s disease were re-defined. In respect to genetic testing, NIH issued following guidance and recommendations: “A rare type of familial Alzheimer’s disease, called Early-Onset Alzheimer’s Disease (EOAD), is caused by mutations in the amyloid precursor protein, presenilin 1, or presenilin
Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

2 genes. A person who inherits any of these mutations from a parent will almost surely develop Alzheimer’s dementia before age 65. Genetic testing for the disease is common in families with a history of EOAD”; “The major genetic risk factor for the more common, sporadic form of the disease, or Late-Onset Alzheimer’s disease (LOAD), is the ε4 allele of the APOE gene. But carrying this allele by itself does not mean a person has or will develop Alzheimer’s dementia, so genetic testing for APOE ε4 is not recommended outside of a research setting (NIH, 2011).”

The NIH and Alzheimer’s Association released a joint research framework in 2018. In that framework, they state that “Genetics is not formally included in the research framework because our concept of disease rests on neuropathologic change (that can be detected by biomarkers). In contrast, gene variants do not measure pathologic change but rather indicate an individual’s risk for developing pathologic change (Jack et al., 2018).”

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Applicable codes: 81401, 81405, 81406, 81407, 96040, S0265, S3852

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.

Scientific Background and Reference Sources

Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

Genetic Testing for Familial Alzheimer’s Disease AHS – M2038

Policy Implementation/Update Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Update Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/19</td>
<td>New policy developed. BCBSNC will provide coverage for genetic testing for familial alzheimer’s disease when it is determined to be medically necessary because the medical criteria and guidelines are met. Medical Director review 1/1/2019. Policy noticed 1/1/2019 for effective date 4/1/2019. (sk)</td>
</tr>
<tr>
<td>9/10/19</td>
<td>Added codes 81401, 81405, 81406, 81407, 96040, S0265, and S3852 back to policy. Codes were removed erroneously on 8/27/19. (sk)</td>
</tr>
<tr>
<td>10/29/19</td>
<td>Wording in the Policy, When Covered, and/or Not Covered section(s) changed from Medical Necessity to Reimbursement language, where needed.</td>
</tr>
<tr>
<td>11/26/19</td>
<td>Specialty Matched Consultant Advisory Panel review 10/16/2019. (sk)</td>
</tr>
</tbody>
</table>

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.