Corporate Medical Policy

Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

Description of Procedure or Service

The inherited peripheral neuropathies are a heterogeneous group of diseases that may be inherited in an autosomal dominant, autosomal recessive or X-linked dominant manner. The inherited peripheral neuropathies can be divided into hereditary motor and sensory neuropathies (such as Charcot-Marie-Tooth disease), hereditary neuropathy with liability to pressure palsies, hereditary sensory and autonomic neuropathies, and other miscellaneous types (e.g., hereditary brachial plexopathy, giant axonal neuropathy). In addition to clinical presentation, nerve conduction studies and family history, genetic testing can be used to diagnose specific inherited peripheral neuropathies (Kang, 2019).

Related Policies
Nerve Fiber Density Testing AHS – M2112
General Genetic Testing, Germline Disorders AHS – M2145
General Genetic Testing, Somatic Disorders AHS – M2146
Celiac Disease Testing AHS – G2043

***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician.

Policy

BCBSNC will provide coverage for genetic testing for diagnosis of inherited peripheral neuropathies when it is determined the medical criteria or reimbursement guidelines below are met.

Benefits Application

This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy.

When Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies is covered

1. Reimbursement is allowed for genetic counseling for genetic testing for CMT disease and other inherited peripheral neuropathies. Genetic counseling is recommended for genetic testing of CMT disease or other inherited peripheral neuropathies.

2. Genetic Testing for CMT disease is considered medically necessary when the patient displays clinical features of CMT and a definitive diagnosis remains uncertain after history, physical examination, genetic counseling, and completion of conventional diagnostic studies.
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

(i.e. nerve conduction studies and/or electromyography). If results indicate a demyelinating neuropathy, then first test for the most commonly identified CMT subtype, CMT1A (PMP22 duplication).

3. Genetic testing for CMT is considered medically necessary for prenatal diagnosis of known familial mutation(s) in at-risk pregnancies

4. Peripheral nerve biopsy is considered medically necessary to diagnose CMT when clinical features are significantly suggestive of CMT and the genetic tests are negative.

5. Genetic testing for Hereditary Neuropathy with liability to Pressure Palsies (PMP22 deletion) is considered medically necessary when the patient displays clinical features of HNPP and a definitive diagnosis remains uncertain after history, physical examination, genetic counseling, and completion of electrophysiologic studies.

6. Genetic testing for Hereditary Motor Neuropathy (HMN) (BSCL2 gene) is considered medically necessary when the patient displays clinical features of HMN and a definitive diagnosis remains uncertain after history, physical examination, genetic counseling, and completion of electrophysiologic studies.

Note: For all other uncommon hereditary peripheral neuropathy gene testing, refer to policy, General Genetic Testing, Germline Disorders AHS – M2145.

When Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies is not covered

Additional testing for other genes associated with CMT is considered investigational.

Policy Guidelines

Background

Peripheral neuropathies encompass the set of disorders that primarily lead to peripheral nerve dysfunction. Symptoms typically include weakness of muscles at extremities, spine curvature, and loss of sensation at extremities (Kang, 2017b; UTD). Neuropathies may be caused by a variety of different factors, such as metabolic issues (including Fabry disease, Niemann-Pick disease, et al.) or present as a secondary symptom to another condition (such as Tangier disease) (Kang, 2017b).

Charcot-Marie-Tooth (CMT) disease, also known as hereditary motor sensory neuropathy, is a group of progressive disorders that affect the peripheral nerves. CMT is caused by a mutation in one of several myelin genes that result in defects in myelin structure, maintenance or function within the peripheral nerves. Charcot-Marie-Tooth disease is one of the most common inherited neurological disorders, affecting approximately 1 in 2,500 people in the United States (Kang, 2019).

Symptoms

The neuropathy of CMT affects both motor and sensory nerves. Symptoms usually start in childhood and have a gradual progression. The severity of symptoms varies greatly among individuals and even among family members with the disease (Bird, 2019; NINDS, 2007). Typical symptoms include the following:

• Weakness of the foot and lower leg muscles, which may result in foot drop and a high-stepped gait with frequent ankle sprains, tripping or falls
• Foot deformities, such as pes cavus and hammertoes
• Distal calf muscle atrophy often occurs, causing the stork leg deformity or inverted champagne bottle appearance
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

- Weakness and muscle atrophy may occur in the hands, resulting in difficulty with carrying out fine motor skills.
- Sensory loss is gradual and mainly involves proprioception and vibration.
- Spinal deformities like kyphosis and scoliosis can often develop (NINDS, 2007).

Pain can range from mild to severe, and some people may need to rely on foot or leg braces or other orthopedic devices to maintain mobility. Although in rare cases, individuals may have respiratory muscle weakness, CMT is not considered a fatal disease and people with most forms of CMT have a normal life expectancy (NINDS, 2007).

Causes
CMT is caused by mutations in genes that produce proteins involved in the structure and function of either the peripheral nerve axon or the myelin sheath. Although different proteins are abnormal in different forms of CMT disease, all mutations affect the normal function of the peripheral nerves. There is little correlation between the genotype and phenotype of CMT; it is common to see differing mutations result in various clinical phenotypes all within the same gene. (Kang, 2019).

Pattern of Inheritance
The pattern of inheritance varies with the type of CMT disease. CMT1, most cases of CMT2, and most intermediate forms are inherited in an autosomal dominant pattern. CMT4, a few CMT2 subtypes, and some intermediate forms are inherited in an autosomal recessive pattern. CMTX is inherited in an X-linked pattern. In the X-linked recessive patterns, only males develop the disease, although females who inherit the defective gene can pass the disease onto their sons. In the X-linked dominant pattern, an affected mother can pass on the disorder to both sons and daughters, while an affected father can only pass it onto his daughters. Some cases of CMT disease result from a new mutation and occur in people with no history of the disorder in their family. In rare cases the gene mutation causing CMT disease is a new mutation which occurs spontaneously in the individual’s genetic material and has not been passed down through the family. (Kang, 2019).

CMT1
CMT1 is a demyelinating peripheral neuropathy characterized by distal muscle weakness and atrophy, sensory loss, and slow nerve conduction velocity (Bird, 2019). The six subtypes of CMT1 shown in Table 1 are clinically indistinguishable and are designated solely on molecular findings (Saporta et al., 2011)

Table 1: Molecular Genetics of CMT1 (Saporta et al., 2011)

<table>
<thead>
<tr>
<th>Locus Name</th>
<th>Proportion of CMT1 (excluding CMTX)</th>
<th>Gene</th>
<th>Protein Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT1A</td>
<td>70%-80%</td>
<td>PMP22</td>
<td>Peripheral myelin protein 22</td>
</tr>
<tr>
<td>CMT1B</td>
<td>10%-12%</td>
<td>MPZ</td>
<td>Myelin protein P0</td>
</tr>
<tr>
<td>CMT1C</td>
<td>~1%</td>
<td>LITAF</td>
<td>Lipopolysaccharide-induced tumor necrosis factor-alpha factor</td>
</tr>
<tr>
<td>CMT1D</td>
<td>Unknown</td>
<td>EGR2</td>
<td>Early growth response protein 2</td>
</tr>
<tr>
<td>CMT1E</td>
<td>~1%</td>
<td>PMP22</td>
<td>Peripheral myelin protein 22 (sequence changes)</td>
</tr>
<tr>
<td>CMT1F/2E</td>
<td>Unknown</td>
<td>NEFL</td>
<td>Neurofilament light polypeptide</td>
</tr>
</tbody>
</table>
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

CMT1A is an autosomal dominant disease that results from a duplication of the gene on chromosome 17 that carries the instructions for producing the peripheral myelin protein-22 (PMP-22). Overexpression of this gene causes the structure and function of the myelin sheath to be abnormal. A different neuropathy distinct from CMT1A called hereditary neuropathy with predisposition to pressure palsy (HNPP) is caused by a deletion of one of the PMP-22 genes. In this case, abnormally low levels of the PMP-22 gene result in episodic, recurrent demyelinating neuropathy (NINDS, 2007).

CMT1B is an autosomal dominant disease caused by mutations in the gene that carries the instructions for manufacturing the myelin protein zero (P0), which is another critical component of the myelin sheath. Most of these mutations are point mutations. As a result of abnormalities in P0, CMT1B produces symptoms similar to those found in CMT1A (NINDS, 2007).

The less common CMT1C, CMT1D, and CMT1E, which also have symptoms similar to those found in CMT1A, are caused by mutations in the LITAF, EGR2, and NEFL genes, respectively (NINDS, 2007).

CMT2

CMT2 is an axonal (non-demyelinating) peripheral neuropathy characterized by distal muscle weakness and atrophy. Nerve conduction velocities are usually within the normal range; however, occasionally they fall in the low-normal or mildly abnormal range (Bird, 2019). In general, individuals with CMT2 tend to be less disabled and have less sensory loss than individuals with CMT1 (Bird, 2019). It is less common than CMT1. CMT2A, the most common axonal form of CMT, is caused by mutations in Mitofusin 2, a protein associated with mitochondrial fusion. CMT2A has also been linked to mutations in the gene that codes for the kinesin family member 1B-beta protein, but this has not been replicated in other cases. Other less common forms of CMT2 are associated with various genes: CMT2B (associated with RAB7), CMT2D (GARS). CMT2E (NEFL), CMT2H (HSP27), and CMT2I (HSP22) (NINDS, 2007).

<table>
<thead>
<tr>
<th>Locus</th>
<th>Proportion of CMT</th>
<th>Gene / Chromosome Locus</th>
<th>Protein Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT2A1</td>
<td>Unknown</td>
<td>KIF1B</td>
<td>Kinesin-like protein KIF1B</td>
</tr>
<tr>
<td>CMT2A2</td>
<td>20%</td>
<td>MFN2</td>
<td>Mitofusin-2</td>
</tr>
<tr>
<td>CMT2B</td>
<td>Unknown</td>
<td>RAB7A</td>
<td>Ras-related protein Rab-7</td>
</tr>
<tr>
<td>CMT2B1</td>
<td>Unknown</td>
<td>LMNA</td>
<td>Lamin A/C</td>
</tr>
<tr>
<td>CMT2B2</td>
<td>Unknown</td>
<td>MED25</td>
<td>Mediator of RNA polymerase II transcription subunit 25</td>
</tr>
<tr>
<td>CMT2C</td>
<td>Unknown</td>
<td>TRPV4</td>
<td>Transient receptor potential cation channel subfamily V member 4</td>
</tr>
<tr>
<td>CMT2D</td>
<td>3%</td>
<td>GARS</td>
<td>Glycyl-tRNA synthetase</td>
</tr>
<tr>
<td>CMT2E/1F</td>
<td>4%</td>
<td>NEFL</td>
<td>Neurofilament light polypeptide</td>
</tr>
<tr>
<td>CMT2F</td>
<td>Unknown</td>
<td>HSPB1</td>
<td>Heat-shock protein beta-1</td>
</tr>
<tr>
<td>CMT2G</td>
<td>Unknown</td>
<td>12q12-q13</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

<table>
<thead>
<tr>
<th>Locus Name</th>
<th>Proportion of CMT4</th>
<th>Gene</th>
<th>Protein Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT2H/2K</td>
<td>5%</td>
<td>GDAP1</td>
<td>Ganglioside-induced differentiation-associated protein 1</td>
</tr>
<tr>
<td>CMT2I/2J</td>
<td>Unknown</td>
<td>MPZ</td>
<td>Myelin protein P0</td>
</tr>
<tr>
<td>CMT2L</td>
<td>Unknown</td>
<td>HSPB8</td>
<td>Heat-shock protein beta-8</td>
</tr>
<tr>
<td>CMT2N</td>
<td>Unknown</td>
<td>AARS</td>
<td>Ganglioside-induced differentiation-associated protein 1</td>
</tr>
<tr>
<td>CMT2O</td>
<td>Unknown</td>
<td>DYNCIH1</td>
<td>Cytoplasmic dynein 1 heavy chain 1</td>
</tr>
<tr>
<td>CMT2P</td>
<td>Unknown</td>
<td>LRSAM1</td>
<td>E3 ubiquitin-protein ligase LRSAM1</td>
</tr>
<tr>
<td>CMT2S</td>
<td>Unknown</td>
<td>IGHMBP2</td>
<td>DNS-binding protein SMUBP2</td>
</tr>
<tr>
<td>CMT2T</td>
<td>Unknown</td>
<td>DNAJB2</td>
<td>DnaJ homolog subfamily B member 2</td>
</tr>
<tr>
<td>CMT2U</td>
<td>Unknown</td>
<td>MARS</td>
<td>Methionine-tRNA ligase, cytoplasmic</td>
</tr>
</tbody>
</table>

CMT3
CMT3 or Dejerine-Sottas disease is a severe demyelinating neuropathy that begins in infancy. Infants have severe muscle atrophy, weakness, and sensory problems. This rare disorder can be caused by a specific point mutation in the P0 gene or a point mutation in the PMP-22 gene (NINDS, 2007).

CMT4
CMT4 comprises several different subtypes of autosomal recessive demyelinating motor and sensory axonal neuropathies. Each neuropathy subtype is caused by a different genetic mutation, may affect a particular ethnic population, and produces distinct physiologic or clinical characteristics. Affected individuals have the typical CMT phenotype of distal muscle weakness and atrophy associated with sensory loss and, frequently, pes cavus foot deformity. Several genes have been identified as causing CMT4, including GDAP1 (CMT4A), MTMR13 (CMT4B1), MTMR2 (CMT4B2), SH3TC2 (CMT4C), NDG1 (CMT4D), EGR2 (CMT4E), PRX (CMT4F), FDG4 (CMT4H), and FIG4 (CMT4J) (Kang, 2019; NINDS, 2007).

Table 3: Molecular Genetics of CMT4 (Bird, 2019)

<table>
<thead>
<tr>
<th>Locus Name</th>
<th>Proportion of CMT4</th>
<th>Gene</th>
<th>Protein Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMT4A</td>
<td></td>
<td>GDAP1</td>
<td>Ganglioside-induced differentiation-associated protein 1</td>
</tr>
<tr>
<td>CMT4B1</td>
<td></td>
<td>MTMR2</td>
<td>Myotubularin-related protein 2</td>
</tr>
<tr>
<td>CMT4B2</td>
<td>Unknown</td>
<td>SBF2</td>
<td>Myotubularin-related protein 13</td>
</tr>
<tr>
<td>CMT4C</td>
<td>Unknown</td>
<td>SH3TC2</td>
<td>SH3 domain and tetratricopeptide repeats-containing protein 2</td>
</tr>
<tr>
<td>CMT4D</td>
<td></td>
<td>NDRG1</td>
<td>Protein NDRG1</td>
</tr>
</tbody>
</table>

An Independent Licensee of the Blue Cross and Blue Shield Association
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

CMT4E
CMT4F
CMT4H
CMT4J

<table>
<thead>
<tr>
<th>Disease Name</th>
<th>Proportion of Linked CMT</th>
<th>X- Gene / Locus</th>
<th>Protein Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMTX1</td>
<td>90%</td>
<td>GJB1</td>
<td>Gap junction beta-1 protein (connexin 32)</td>
</tr>
<tr>
<td>CMTX2</td>
<td>Xp22.2</td>
<td>AIFM1</td>
<td>Apoptosis-inducing factor 1</td>
</tr>
<tr>
<td>CMTX3</td>
<td></td>
<td>PRPS1</td>
<td>Ribose-phosphate pyrophosphokinase 1</td>
</tr>
<tr>
<td>CMTX4/Cowchock syndrome</td>
<td>Unknown</td>
<td>PDK3</td>
<td>Pyruvate dehydrogenase kinase isoform 3</td>
</tr>
<tr>
<td>CMTX5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMTX6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Bird, 2016); (Kim, 2013)

CMTX
CMTX is caused by a point mutation in the connexin-32 gene on the X chromosome. The connexin-32 protein is expressed in Schwann cells which wrap around nerve axons and make up a single segment of the myelin sheath (NINDS, 2007). CMTX type 1 is characterized by a moderate to severe motor and sensory neuropathy in affected males and usually mild to no symptoms in carrier females. Sensorineural deafness and central nervous system symptoms also occur in some families (Bird, 2016).

Table 4: Molecular Genetics of CMTX

Hereditary Brachial Plexopathy (Hereditary Neuralgic Amyotrophy)
This condition is primarily characterized by painful injuries to the brachial plexus nerves as well as episodic weakness of the shoulder and arm. Other symptoms such as winging of the scapula, short stature, neck folds, small face, and hypotelorism may be present. Nerve conduction velocity is typically normal, and the histopathology of this condition is non-specific. The septin 9 gene (SEPT9) on chromosome 17 has been associated with this condition (Bromberg, 2018).

Giant Axonal Neuropathy
This condition is characterized by disorganization of cytoskeletal intermediate filaments stemming from a mutated form of gigaxonin. Patients with this disorder often have a signature physical appearance; red and kinked hair, high foreheads, long eyelashes, and pale complexions are all hallmarks of this condition. The central nervous system may be affected as well with cerebellar dysfunction, spasticity, and potentially intellectual disability as possible symptoms. Nerve biopsy
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

may show axonal loss or other axonal dysfunction. This diagnosis is confirmed by testing of the GAN
gene (Kang, 2017b).

Hereditary Sensory and Autonomic Neuropathies (HSANs)
This subsection of disorders primarily encompasses non-motor neuropathies and are characterized by
major loss of myelinated and unmyelinated fibers. These conditions are not as common as hereditary
motor neuropathies and primarily present with sensory dysfunction, although motor functions may be
affected. There are five main types of HSAN, each caused by different genes. Genes are associated as
shown below (Eichler, 2018).

<table>
<thead>
<tr>
<th>Disease Name (subtype)</th>
<th>Gene(s) or Locus</th>
<th>Examples of symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSAN1 (A)</td>
<td>SPTLC1</td>
<td>Distal sensory loss, distal muscle wasting</td>
</tr>
<tr>
<td>HSAN1 (B)</td>
<td>3p24-p22</td>
<td>Axonal neuropathy with distal sensory impairment</td>
</tr>
<tr>
<td>HSAN1 (C)</td>
<td>SPTLC2</td>
<td>Distal sensory loss, distal muscle wasting</td>
</tr>
<tr>
<td>HSAN1 (D)</td>
<td>ATL1</td>
<td>Distal sensory loss, distal muscle wasting</td>
</tr>
<tr>
<td>HSAN1 (E)</td>
<td>DNMT1</td>
<td>Hearing loss, progressive dementia</td>
</tr>
<tr>
<td>HSAN1 (F)</td>
<td>ATL3</td>
<td>Distal sensory impairment</td>
</tr>
<tr>
<td>HSAN2 (A)</td>
<td>HSN2</td>
<td>Loss of pain, pressure, touch, and temperature sensation</td>
</tr>
<tr>
<td>HSAN2 (B)</td>
<td>FAM134B</td>
<td>Loss of pain, pressure, touch, and temperature sensation</td>
</tr>
<tr>
<td>HSAN2 (C)</td>
<td>KIF1A</td>
<td>Loss of pain, pressure, touch, and temperature sensation</td>
</tr>
<tr>
<td>HSAN2 (D)</td>
<td>SCN9A</td>
<td>Loss of pain and temperature sensation, hearing loss</td>
</tr>
<tr>
<td>HSAN3/Familial Dysautonomia</td>
<td>9q31</td>
<td>Dysautonomic crises, orthostatic hypotension</td>
</tr>
<tr>
<td>HSAN4/Congenital Insensitivity to Pain with Anhidrosis</td>
<td>NTRK1</td>
<td>Loss of pain sensation, thermoregulatory dysfunction</td>
</tr>
<tr>
<td>HSAN5</td>
<td>NGFB</td>
<td>Loss of pain and temperature sensation</td>
</tr>
<tr>
<td>HSAN6</td>
<td>DST</td>
<td>Lack of psychomotor development, respiratory difficulties</td>
</tr>
<tr>
<td>HSAN7</td>
<td>SCN11A</td>
<td>Inability to experience pain</td>
</tr>
</tbody>
</table>

Other unclassified HSANs exist, such as spastic paraplegia with ulcerations of the hands and feet
(associated with CCT5) and sensory neuropathy with ichthyosis and anterior chamber syndrome
(Eichler, 2018).

Genetic Testing
Charcot-Marie-Tooth disease is usually diagnosed by an extensive history and physical examination.
The clinical diagnosis is then confirmed by electrodiagnostic tests like electromyography and nerve
conduction velocity tests, and sometimes by nerve biopsy. Genetic testing is available for some types
of CMT, and results are usually enough to confirm a diagnosis. Genetic testing can simplify the
diagnosis of CMT by avoiding invasive procedures, such as nerve biopsy. In addition, early diagnosis
can facilitate early interventions, including physical therapy. However, most therapies are only
supportive (occupational, physical) and generally do not rely on the results of specific testing (Kang, 2017a).

Genetic testing for CMT is complicated by the extensive underlying genetic heterogeneity. The CMT spectrum of disorders can be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. The most commonly identified CMT subtypes are CMT1A (PMP22 duplication), CMTX1 (GJB1 mutation), hereditary neuropathy with liability to pressure palsies (PMP22 deletion), CMT1B (MPZ mutation), and CMT2A (MFN2 mutation). Together, these five subtypes accounted for 92 percent of genetically defined CMT cases. All other CMT subtypes and associated mutations each account for <1 percent of genetically defined CMT (CMTA; Kang2019). Genetic screening for relatives of a patient diagnosed with CMT is an option, but risk assessment depends on several factors, including accuracy of the diagnosis, determination of the mode of inheritance for the individual family, and results of molecular genetic testing (Kang, 2019).

Clinical Validity and Utility

DiVincenzo et al performed an analysis of the genetic landscape of CMT. 14 genes associated with CMT (PMP22, GJB1, MPZ, MFN2, SH3TC2, GDAP1, NEFL, LITAF, GARS, SHPB1, FIG4, EGR2, PRX, and RAB7A) were evaluated out of 3312 individuals. Deletions and duplications in the PMP22 gene consisted of about 78% of positive findings, followed by mutations in the GJB1 (6.7%), MPZ (5.3%), and MFN2 (4.3%) genes. 71% of the pathogenic mutations found were missense mutations. Overall, 95% of the positive results involved one of four genes (PMP22, GJB1, MPZ, MFN2). The authors concluded that these four genes should be screened first before proceeding with further genetic testing (DiVincenzo et al., 2014).

Pareyson (2017) reviewed the current literature on CMT diagnosis stating that data justifies a stepwise algorithm considering a variety of factors, such as phenotype, nerve conduction velocities, and ethnicity. The authors note that NGS is steadily replacing older methods of sequencing in this algorithm. The authors propose evaluating the first few common genes (PMP22, MPZ, et al) and then considering larger sequencing methods such as NGS. However, due to the growing number of genes associated with CMT, these larger sequencing methods may be considered first-line. Finally, the authors state that due to the growing number of associated genes, newer classifications need to be discussed and validated further (Pareyson et al., 2017).

Rudnik-Schöneborn and colleagues evaluated the clinical features and genetic results of 1206 CMT patients and 124 affected relatives. Genetic detection rates were 56% in demyelinating CMT and 17% in axonal CMT. “Three genetic defects (PMP22 duplication/deletion, GJB1/Cx32 or MPZ/P0 mutation) were responsible for 89.3% of demyelinating CMT index patients in whom a genetic diagnosis was achieved, and the diagnostic yield of the three main genetic defects in axonal CMT (GJB1/Cx32, MFN2, MPZ/P0 mutations) was 84.2%”. The authors concluded that “diagnostic algorithms are still useful for cost-efficient mutation detection and for the interpretation of large-scale genetic data made available by next generation sequencing strategies” (Rudnik-Schoneborn et al., 2016).

Guidelines and Recommendations

AAN, AANEM, and AAPM&R (2009, reaffirmed 2013)
The Polyneuropathy Task Force that included 19 physicians with representatives from the American Academy of Neurology (AAN), the American Academy of Neuromuscular and Electrodiagnostic Medicine (AANEM), and the American Academy of Physical Medicine and Rehabilitation (AAPM&R) concluded that “genetic testing is established as useful for the accurate diagnosis and classification of hereditary polyneuropathies (Class I)” (England et al, 2009).

The Task Force stated that “for patients with a cryptogenic polyneuropathy who exhibit a classic hereditary neuropathy phenotype, routine genetic screening may be useful for CMT1A duplication/deletion and Cx32...
mutations in the appropriate phenotype (Class III). Further genetic testing may be considered guided by the clinical question.” The Task force recommended that “genetic testing should be conducted for the accurate diagnosis and classification of hereditary neuropathies (Level A)”. The Task force further recommended that “Genetic testing may be considered in patients with a cryptogenic polyneuropathy and classic hereditary neuropathy phenotype (Level C). There is insufficient evidence to support or refute the usefulness of routine genetic testing in cryptogenic polyneuropathy patients without a classic hereditary phenotype (Level U)” (England et al, 2009).

No guidelines or recommendations for genetic testing for inherited peripheral neuropathies other than CMT and HNPP were found from any professional association and regulatory agencies.

European Federation of Neurological Societies (EFNS, 2011)

The EFNS released recommendations on genetic testing for various types of peripheral neuropathies. Regarding CMT, they noted that “Given the rarity of AR CMT in the European population routine diagnostic screening of the many known genes is currently not feasible” but acknowledged that “Currently, molecular genetic testing can be offered for several of the more prevalent CMT genes”. EFNS stated that PMP22 duplication should be tested first in patients presenting with CMT1, followed by sequencing of GJB1 (in case no male-to-male transmission is present), MPZ, and PMP22. If a patient presents with CMT2, MFN2 should be screened first, followed by MPZ. If a patient presents with intermediate CMT, GJB1 and MPZ should be screened. EFNS notes that in patients with hereditary neuropathy with liability to pressure palsies will be investigated for a PMP22 deletion at the same time as a screening for a PMP22 duplication (Burgunder et al., 2011).

However, routine diagnostic screenings for hereditary motor neuropathy (HMSN) and hereditary sensory-autonomic neuropathy (HSAN) are not feasible due to low mutation frequencies. If screening is performed for these conditions, EFNS recommends BSCL2 as the first candidate for screening in HMSN. NTRK1 may also be screened for in congenital insensitivity to pain with anhidrosis patients (CIPA, a sub-phenotype of HSAN) and RAB7 may be screened in CMT2B patients. Finally, SEPT9 may be screened in the context of hereditary neuralgic amyotrophy (HNA) (Burgunder et al., 2011).

Applicable Federal Regulations

A search on the FDA website for “neuropathy” on April 11, 2019 yielded no results pertaining to genetic testing. Additionally, many labs have developed specific tests that they must validate and perform in house. These laboratory-developed tests (LDTs) are regulated by the Centers for Medicare and Medicaid (CMS) as high-complexity tests under the Clinical Laboratory Improvement Amendments of 1988 (CLIA ’88). As an LDT, the U. S. Food and Drug Administration has not approved or cleared this test; however, FDA clearance or approval is not currently required for clinical use.

Billing/Coding/Physician Documentation Information

This policy may apply to the following codes. Inclusion of a code in this section does not guarantee that it will be reimbursed. For further information on reimbursement guidelines, please see Administrative Policies on the Blue Cross Blue Shield of North Carolina web site at www.bcbsnc.com. They are listed in the Category Search on the Medical Policy search page.

Reimbursement:

If five or more genes are being tested, use appropriate genetic procedure sequencing panel code.

Applicable service codes: 81324, 81325, 81326, 81403, 81404, 81405, 81406, 81448, 96040, S0265

BCBSNC may request medical records for determination of medical necessity. When medical records are requested, letters of support and/or explanation are often useful, but are not sufficient documentation unless all specific information needed to make a medical necessity determination is included.
Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

Scientific Background and Reference Sources

An Independent Licensee of the Blue Cross and Blue Shield Association

Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

Specialty Matched Consultant Advisory Panel review 7/2019

Medical Director review 7/2019

Policy Implementation/Update Information

1/1/2019 BCBSNC will provide coverage for genetic testing for diagnosis of inherited peripheral neuropathies when it is determined to be medically necessary because criteria and guidelines are met. Medical Director review 1/1/2019. Policy noticed 1/1/2019 for effective date 4/1/2019. (jd)

9/10/2019 Reviewed by Avalon 2nd Quarter 2019 CAB. Related Policies added to Description section. When Covered section revised as follows: Item 1, added “or other inherited peripheral neuropathies”; item 2, added “If results indicate a demyelinating neuropathy, then first test for the most commonly identified CMT subtype, CMT1A (PMP22 duplication.”, and removed items a. and b. related to specific values for velocity testing in nerve conduction and specific cascade testing; added item 6 for Genetic testing for Hereditary Motor Neuropathy (HMN) (BSCL2 gene), and added “Note” which refers to policy, General Genetic Testing, Germline Disorders AHS – M2145 for all other uncommon hereditary peripheral neuropathy gene testing. Removed the following statement from the When Not Covered section: “Genetic testing for all other inherited peripheral neuropathies is considered investigational”. Code table removed from the Billing/Coding section and reimbursement statement added. Policy guidelines and references updated. Medical Director review. (jd)
An Independent Licensee of the Blue Cross and Blue Shield Association

Genetic Testing for Diagnosis of Inherited Peripheral Neuropathies
AHS – M2072

10/29/19 Wording in the Policy, When Covered, and/or Not Covered section(s) changed from Medical Necessity to Reimbursement language, where needed. (hb)

Medical policy is not an authorization, certification, explanation of benefits or a contract. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the group contract and subscriber certificate that is in effect at the time services are rendered. This document is solely provided for informational purposes only and is based on research of current medical literature and review of common medical practices in the treatment and diagnosis of disease. Medical practices and knowledge are constantly changing and BCBSNC reserves the right to review and revise its medical policies periodically.